

Weighting Di-Boson MC events

Gideon Bella Tel Aviv University

- MC generators
- Di-Boson processes
- Event weighting package
- Boson spin information
- Anomalous Triple Gauge Couplings (TGC)

See: arXiv:0803.3307 (hep-ph)

MC Generators

Generator	Pythia	вно	MC@NLO	Sherpa
Process	all	$W^+W^-, W^\pm Z, W^\pm \gamma, Z\gamma$	$W^+W^-, W^\pm Z, ZZ$	all
NLO	×	\checkmark	\checkmark	$\times, \leq 2 \text{ jets}$
Boson width	\checkmark	×	×	\checkmark
Spin inform.	\checkmark	\checkmark	×	\checkmark
Anom. TGC	×	\checkmark	×	\checkmark
PS, hadroniz.,	\checkmark	×	(with Jimmy)	\checkmark
underlying ev.			V	
Unweight. ev.	\checkmark	×	*	\checkmark

Weight Distribution in BHO WW Events

×

Di-Boson Processes

2July 2008

TOOLS 2008

×

P_T(jet) Distributions in W⁺Z Events

Note: $P_{\rm T}(\text{jet}) \equiv P_{\rm T}({\rm W}^+{\rm Z})$

Fraction of Events with Jet $(p_T(jet) > 30 \text{ GeV})$

	Pythia	вно	MC@NLO	Sherpa
W^+W^-	0.268	0.478	0.311	0.422
W^+Z	0.289	0.347	0.474	0.516
$W^{-}Z$	0.280	0.348	0.472	0.520
$\mathrm{W}^{+}\gamma$	0.228	0.438	-	0.616
$W^-\gamma$	0.221	0.448	-	0.663
ZZ	0.245	-	0.365	0.385
Zγ	0.213	0.364	-	0.534

Fraction of g,q,\overline{q} Jets $(p_T(jet) > 30 \text{ GeV})$

	Pythia	вно	MC@NLO	Sherpa
W^+W^-	1, 0, 0	0.37, 0.47, 0.16	0.58, 0.31, 0.11	0.45, 0.41, 0.14
W^+Z	1, 0, 0	0.30, 0.55, 0.15	0.58, 0.33, 0.09	0.41, 0.45, 0.14
$W^{-}Z$	1, 0, 0	0.27, 0.53, 0.20	0.56, 0.32, 0.12	0.37, 0.47, 0.16
$\mathrm{W}^+\gamma$	1, 0, 0	0.18, 0.57, 0.25	-	0.14, 0.50, 0.36
$W^-\gamma$	1, 0, 0	0.15, 0.65, 0.20	-	0.10, 0.74, 0.16
ZZ	1, 0, 0	-	0.85, 0.11, 0.04	0.53, 0.34, 0.13
Zγ	1, 0, 0	0.32, 0.52, 0.16	-	0.21, 0.60, 0.19

Event Weighting Package

To introduce spin information to MC@NLO generated events we assign each event with a weight:

 $w = \frac{BHO \text{ weight with spin info}}{BHO \text{ weight without spin info}}$

- The BHO weight calculation is done in the package bhowei which is based on the BHO code.
- The BHO code requires the event to be balanced with conserved energy and momentum.
- MC@NLO events with or without ME jets are not balanced, due to the showering. SH jets show up as missing P_T .
- SH jets must be combined to the ME jets into one jet, to make the diboson+jet system balanced.
- We assume no longitudinal component of the SH jet in the c.m. frame.

The resulting balanced event is interpreted as a di-boson+1jet event, and is handled by the BHO code as such, and the corresponding weight is always positive!

- The event weighting package can be used also to introduce anomalous TGC to events generated by MC@NLO, Pythia or Sherpa.
- Another use is for systematic studies, e.g. PDF systematics, running the code for different PDFs.
- Unfortunately, finite boson width cannot be introduced by event weighting.

The calling sequence:

call bhowei(mspin,xsec,ifail)

input: mspin=0 or 1 without/with spin info

<u>output</u>: xsec - resulting BHO cross-section (arbitrary units)

ifail – 0 for successful calculation

Additional information (event 4-momenta and particle id's, physical constants, anomalous couplings, PDF set number) is entered via common blocks.

2July 2008

Boson Spin Information

Consider W⁺Z event:

×

Are the differences for high $P_T(jet)$ related to the different contributions to jet events and different jet P_T spectra?

We reweight BHO events, so that their jet info agrees with MC@NLO.

12

Anomalous TGCs

2July 2008

13

Summary and Conclusions

- Bhowei can be used to introduce:
 - a) spin info to events generated by MC@NLO
 - b) TGC weights to events generated by MC@NLO and Pythia
- The hadronic system recoiling against the two bosons is different between different MC generators, causing differences in the angular and P[⊥] distributions of events with high P[⊥](jet).
- Events with high P_T(jet) should be suppressed
- Real data should be used to study events with high P_T(jet).
- Better di-boson MC generators are welcome:
 - a) NLO+PS with spin information
 - b) finite W and Z widths.
 - c) anomalous couplings
 - d) NNLO and electroweak corrections.

Backup Slides

Total Cross Sections [pb] multiplied by BR into $e+\mu$ ($p_T(\gamma) > 30 \text{ GeV}$)

	Pythia	BHO		MC@NLO
	LO	LO	NLO	NLO
W^+W^-	3.510	3.774	4.978	5.211
W^+Z	0.257	0.273	0.417	0.432
$W^{-}Z$	0.160	0.171	0.262	0.270
$\mathrm{W}^{+}\gamma$	3.349	3.996	8.707	-
$W^-\gamma$	2.226	2.681	6.418	-
ZZ	0.0424	-	-	0.0682
Zγ	1.471	1.756	2.433	-
TOOLS 2008				16

P_T(jet) Distributions in WW Events

×

2July 2008

2July 2008

Angular Distributions in ZW⁺ Events

