Automatic Calculation of SUSY Particle Production and Decay with GRACE/SUSY-loop

Fujimoto, J., Ishikawa, T., Jimbo, M., Kon, T., Kurihara, Y., Kuroda, M. and Tomita, M.

- 1. Introduction
- 2. GRACE/SUSY & GRACE/SUSY-loop
- 3. Physical results
- 4. Summary

Talk presented at TOOLS 2008, *Tools for the New Physics and its Background*, on July 4th at the Max-Planck-Institut für Physik in Munich, Germany

1. Introduction

Automatic calculation of amplitudes → Important @ HE colliders LHC & ILC Many body final states Possible many new particles Systems of automatic calculation GRACE Prog. Theor. Phys. Suppl. 138 (2000) 18 Comput. Phys. Commun. 153 (2003) 106 **CompHEP** Nucl. Instrum. Meth. A534 (2004) 250 CalcHEP hep-ph/0412191 FeynArt/FormCalc Comput.Phys.Commun. 140 (2001) 418; 143 (2002) 54 MadGraph JHEP 0302 (2003) 027

What we can do with GRACE

- ✓ Generate Feynman diagrams automatically
- ✓ Generate FORTRAN code of helicity amplitudes automatically (@ tree level)
- ✓ Generate symbolic (REDUCE, Form) source code for generating FORTRAN code of amplitudes automatically (@ one-loop level)
- Calculate phase-space integration of amplitudes numerically
- ✓ Generate events (unweighted)

2. GRACE/SUSY & GRACE/SUSY-loop

Tree level system ⇒ GRACE/SUSY COMPLETED!

M. Kuroda, Complete Langarian of MSSM, hep-ph/9902340 J. Fujimoto et al., Comput. Phys. Commun. 153 (2003) 106 The system can be obtained at http://minami-home.kek.jp/

One-loop level system
GRACE/SUSY-loop Developing
Renormailzation scheme;
Physical results of chargino production and decay:
J. Fujimoto et al., Phys. Rev. D75 (2007) 113002

Usage (GRACE/SUSY)

Input file 'in.prc'

Usage (GRACE/SUSY-loop)

Input file 'in.prc'

Model="mssmnlg_j2.mdl"; Process; ELWK={4,2}; Initial={electron positron}; Final={neutralino1 neutralino2}; Expand=Yes; Block=No; AnyCT=No; Kinem="2201"; ExtSelf=Mdl; Pend;

Example

 $e^- e^+ \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2$

Output files for definition of Feynman diagrams

3554 one-loop level diagrams9 tree-level diagrams

REDUCE source codes

Fortran codes & Executable files

'grcred'

'make'

'grc'

Renormalization scheme On-shell renormalization condition: Gauge bosons, Fermions, Scalar fermions, Higgs bosons (A^0 , H^0), Neutralino ($\widetilde{\chi}_1^0$, Charginos ($\widetilde{\chi}_1^+$, $\widetilde{\chi}_2^+$)

Renormalization of tanβ:

$$\delta \tan \beta = -\frac{1}{2} \tan \beta \left(\delta Z_{H_1} - \delta Z_{H_2} - 2 \frac{\delta v_1}{v_1} + 2 \frac{\delta v_1}{v_1} \right)$$

Gauge invariance check with Non-linear gauge (NLG)!! $\frac{\delta v_1}{v_1} = \frac{\delta v_2}{v_2} \longrightarrow \text{Gauge}$

2) Scheme Variation 2

 $\delta m_{\tilde{f}}^2 = -\operatorname{Re}\Sigma_{\tilde{f}\tilde{f}}(m_{\tilde{f}}^2)$

$$\delta \theta_{e} = \frac{1}{2} \frac{\sum_{\tilde{e}_{1}\tilde{e}_{2}} (m_{\tilde{e}_{2}}^{2}) + \sum_{\tilde{e}_{2}\tilde{e}_{1}} (m_{\tilde{e}_{1}}^{2})}{m_{\tilde{e}_{2}}^{2} - m_{\tilde{e}_{1}}^{2}}$$

$$\delta \theta_{q} = \frac{1}{2} \frac{\sum_{\tilde{q}_{1}\tilde{q}_{2}} (m_{\tilde{q}_{2}}^{2}) + \sum_{\tilde{q}_{2}\tilde{q}_{1}} (m_{\tilde{q}_{1}}^{2})}{m_{\tilde{q}_{2}}^{2} - m_{\tilde{q}_{1}}^{2}} \qquad q = u, d$$

Nonlinear gauge fixing terms in MSSM

$$F_{W^{\pm}} = (\partial_{\mu} \pm i e \, \widetilde{\alpha} A_{\mu} \pm i g c_{W} \, \widetilde{\beta} Z_{\mu}) W^{\pm \mu} \\ \pm i \xi_{W} \, \frac{g}{2} \, (\nu + \widetilde{\delta}_{h} h^{0} + \widetilde{\delta}_{H} H^{0} \pm i \widetilde{\kappa} G^{0}) G^{\pm}$$

$$F_{Z} = \partial_{W} Z^{\mu} + \xi_{Z} \frac{g_{Z}}{2} (v + \tilde{\varepsilon}_{h} h^{0} + \tilde{\varepsilon}_{H} H^{0}) G^{0}$$

$$F_{\gamma} = \partial_{\mu} A^{\mu}$$

 $(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}_h, \widetilde{\delta}_H, \widetilde{\kappa}, \widetilde{\varepsilon}_h, \widetilde{\varepsilon}_H)$: NLG parameters

Neutralino production (one-loop level) $e^- e^+ \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$

Ref. Őller, W. et al., Phys. Lett. B590 (2004) 273; Phys. Rev. D71 (2005) 115002 Fritzsche, T. et al., Nucl. Phys. Proc. Suppl. 135 (2004) 102 Neutralino decay (one-loop level) $\widetilde{\chi}_2^0 \rightarrow 2$ -body $\widetilde{\chi}_3^0 \rightarrow 2$ -body $\widetilde{\chi}_4^0 \rightarrow 2$ -body $\widetilde{\chi}_2^0 \rightarrow 3$ -body

Ref. Drees, M. et al., JHEP 0702 (2007) 032

★ SPS1a' parameters: Aguilar-Saavedra, J. A. et al., Eur. Phys. J. C46 (2006) 43

2-body decay of $\widetilde{\chi}_2^0$

SPS1a'14

neutralino2>	#of 1-loop diagrams	Γ[Gev]	δ1loop	Γ+8Γ	Br_corr	
anti-snu-tau, nu-tau	59	$1.34\mathrm{E}$ -02	-1.1%	1.33E-02	8.0%	
anti-stau1, tau	98	4.47E-02	1.9%	$4.55 ext{E-} 02$	27.3%	
anti-snu-mu, nu-mu	59	9.87E-03	-1.0%	9.77E-03	5.9%	
anti-snu-e, nu-e	59	9.86E-03	-1.0%	9.75E-03	5.9%	
nu-tau-bar, snu-tau	59	1.34E-02	-1.1%	1.33E-02	8.0%	
anti-tau, stau1	98	4.47E-02	1.9%	4.55 E- 02	27.3%	
nu-mu-bar, snu-mu	59	9.87E-03	-1.0%	9.77E-03	5.9%	
nu-e-bar, snu-e	59	9.86E-03	-1.0%	9.75E-03	5.9%	

One-loop correction with GRACE/SUSY and FeynArt/FeynCalc

GRACE/SUSY

FeynArt/FeynCalc

2-body decay of $\widetilde{\chi}_3^0$

#of 1-loop $\Gamma[\text{Gev}]$ neutralino3 --> $\delta 1 loop$ $\Gamma + \delta \Gamma$ Br_corr diagrams 193 1.35E+0013.2% 1.53E+0030.1% anti-chargino1, w-plus chargino1, w-minus 193 1.35E+001.53E+0030.1% 13.2%z. neutralino1 4.15E-01 5.17E-01 304 24.6%10.2% z, neutralino2 23.3%304 1.02E+0015.3% 1.18E+00

16

SPS1a'

2-body decay of $\widetilde{\chi}_4^0$

SPS1a'

17

neutralino4>	#of 1-loop diagrams	Γ[Gev]	δ1loop	Γ+δΓ	Br_corr
anti-chargino1, w-plus	193	1.52E+00	11.6%	1.70E+00	27.8%
chargino1, w-minus	193	1.52E+00	11.6%	1.70E+00	27.8%
neutralino1, higgs1	317	3.90E-01	12.8%	4.40E-01	7.2%
neutralino2, higgs1	317	1.04E+00	-1.1%	1.03E+00	16.9%

One-loop corrections for 3-body decay

Another scenario: 2-body decays cannot occur (with another parameter set)

 $\widetilde{\chi}_{2}^{0} \rightarrow$

 $\widetilde{\chi}_1^0 u \overline{u} \quad \widetilde{\chi}_1^0 s \overline{s} \quad \widetilde{\chi}_1^0 v_e \overline{v}_e \quad \widetilde{\chi}_1^0 e^- e^+$ $\widetilde{\chi}_1^0 d\overline{d} \quad \widetilde{\chi}_1^0 b\overline{b} \quad \widetilde{\chi}_1^0 v_\mu \overline{v}_\mu \quad \widetilde{\chi}_1^0 \mu^- \mu^+$ $\widetilde{\chi}_1^0 v_{ au} \overline{v}_{ au} = \widetilde{\chi}_1^0 \tau^- \tau^+$ $\widetilde{\chi}_{1}^{0}c\overline{c}$ **ELWK one-loop** QCD one-loop

Feynman diagrams of $\tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 b \overline{b}$ ELWK One-loop (3716 diagrams)

QCD One-loop (126 diagrams)

3-body decay of $\tilde{\chi}_2^0$

	neutralino2>	#of 1-loop diagram	Γ[Gev]	δlloop	δ1loop	Γ+δΓ	Br_corr
1	neutralino1, nu-tau-bar,nu-tau	1112	2.412E-06	9.4%	9.4%	2.64E-06	17.3%
2	neutralino1, anti-tau, tau	3554	3.039E-06	20.2%	20.2%	3.65E-06	24.0%
3	neutralino1, nu-mu-bar, nu-mu	1112	2.457E-06	9.4%	9.4%	2.69E-06	17.7%
4	neutralino1, anti-muon, muon	3554	1.198E-06	17.7%	17.7%	1.41E-06	9.3%
5	neutralino1, nu-e-bar, nu-e	1112	2.458E-06	9.4%	9.4%	2.69E-06	17.7%
6	neutralino1, e+, e-	3554	1.196E-06	17.8%	17.8%	1.41E-06	9.3%
7	neutralino1, b-bar, b	3716 QCD:126	2.717E-07	1.5% -2.3%	-0.8%	2.70E-07	1.8%
8	neutralino1, s-bar, s	3716 QCD:126	1.218E-07	21.6% 7.7%	29.3%	1.57E-07	1.0%
9	neutralino1, c-bar, c	3716 QCD:126	6.727E-08	13.8% 1.8%	15.6%	7.78E-08	0.5%
10	neutralino1, d-bar, d	3716 QCD:126	1.217E-07	22.7% 7.8%	30.5%	1.59E-07	1.0%
11	neutralino1, u-bar, u	3716 QCD:126	6.156E-08	11.9% 4.8%	16.7%	7.18E-08	0.5%

3-body decay of $\widetilde{\chi}_2^0$

Production and decay of $\widetilde{\chi}_2^0$

22

23 How to check results $e^- e^+ \rightarrow \widetilde{\chi}^0_1 \ \widetilde{\chi}^0_2$ For σ [(Full loop-diagrams)X(A tree-diagram)] Gauge invariance check (NLG) 31 digits • $(\tilde{\alpha}, \tilde{\beta}, \tilde{\delta}_h, \tilde{\delta}_H, \tilde{\kappa}, \tilde{\varepsilon}_h, \tilde{\varepsilon}_H) = (0, 0, 0, 0, 0, 0, 0)$ σ (Virtual) = -1.9729879385817752800946250998469395E-02 • $(\widetilde{\alpha}, \widetilde{\beta}, \widetilde{\delta}_{\mu}, \widetilde{\delta}_{\mu}, \widetilde{\kappa}, \widetilde{\varepsilon}_{\mu}, \widetilde{\varepsilon}_{\mu}) = (1, 2, 3, 4, 5, 6, 7)$ σ (Virtual) = -1.9729879385817752800946250998462461E-02 Ultraviolet check (CUV) 22 digits CUV = 0 σ (Virtual) = -1.9729879385817752800946250998469395E-02 • CUV = 1000 σ (Virtual) = -1.9729879385817752800947890626998724E-02

4. Summary

GRACE/SUSY-loop

- Powerful tool for SUSY RC analysis
 - Automatic calculation at one-loop level
 - EW and QCD in MSSM
 - Systematic studies for consistency check
 - Nonlinear gauge
 - C_{uv} check, Infrared check, etc.
- Now, up to $2 \rightarrow 2$ and $1 \rightarrow 3$ processes have been calculated

Parameters set: SPS1a'

26

mSUGRA values

 $M_{1/2} = 250 \text{GeV}$ $sign(\mu) = +1$ $M_0 = 70 \text{GeV}$ $tan\beta = 10$ $A_0 = -300 \text{GeV}$

Low energy inputs $M_1 = 100.1 {\rm GeV}$ $mv_e = 0.0 \text{GeV}$ $mu = 58.0 \times 10^{-3} \, \text{GeV}$ $M_2 = 197.5 \text{GeV}$ $mv_{\mu} = 0.0 \text{GeV}$ $md = 58.0 \times 10^{-3} \, \text{GeV}$ $\mu = 399.2 \text{GeV}$ $mv_{\tau} = 0.0 \text{GeV}$ mc = 1.5 GeV $\tan\beta = 10$ $me = 0.5109906 \times 10^{-3} \text{GeV}$ $ms = 92.0 \times 10^{-3} \, \text{GeV}$ $m\mu = 105.658389 \times 10^{-3} \text{GeV}$ mt = 178.0 GeV $M_{W^{\pm}} = 80.35 \text{GeV}$ $m\tau = 1.7771 GeV$ mb = 4.70 GeV $M_{20} = 91.187 \text{GeV}$

Sleptons

 $m\widetilde{e}_1 = 125.50 \text{GeV}$ $m\widetilde{e}_2 = 190.14 \text{GeV}$ $\theta_e = 0.50\pi$ $m\widetilde{v}_e = 172.70 \text{GeV}$ $m \tilde{\mu}_1 = 125.43 \text{GeV}$ $m \tilde{\mu}_2 = 190.16 \text{GeV}$ $\theta_\mu = 0.49 \pi$ $m \tilde{\nu}_\mu = 172.69 \text{GeV}$ $m \tilde{\tau}_1 = 107.71 \text{GeV}$ $m \tilde{\tau}_2 = 195.08 \text{GeV}$ $\theta_{\tau} = 0.40 \pi$ $m \tilde{\nu}_{\tau} = 170.63 \text{GeV}$

Squarks

 $m\widetilde{u}_1 = 545.67 \text{GeV}$ $m\widetilde{u}_2 = 563.44 \text{GeV}$ $\theta_u = 0.50\pi$ $m\widetilde{d}_1 = 545.50 \text{GeV}$ $m\widetilde{d}_2 = 569.03 \text{GeV}$ $\theta_d = 0.50\pi$

 $m\widetilde{s}_1 = 545.52 \text{GeV}$ $m\widetilde{s}_2 = 568.97 \text{GeV}$ $\theta_s = 0.49\pi$

 $m\widetilde{c}_1 = 545.66 \text{GeV}$ $m\widetilde{c}_2 = 563.45 \text{GeV}$ $\theta_c = 0.48\pi$ $m\widetilde{t_1} = 368.53 \text{GeV}$ $m\widetilde{t_2} = 583.79 \text{GeV}$ $\theta_t = 0.24\pi$

 $m\widetilde{b}_1 = 450.12 \text{GeV}$ $m\widetilde{b}_2 = 544.38 \text{GeV}$ $\theta_b = 0.08\pi$

Parameters set: Another scenario

mSUGRA values $M_{1/2} = 250 \text{GeV}$ $sign(\mu) = +1$ $M_0 = 70 \text{GeV}$ $tan\beta = 10$ $A_0 = -300 \text{GeV}$

Low energy inputs $M_1 = 100.13 \text{GeV}$ $\mu = 399.15 \text{GeV}$ $M_2 = 157.53 \text{GeV}$ $\tan \beta = 3.00$ $M_3 = 610 \text{GeV}$ $M_{A^0} = 200 \text{GeV}$ Neutralinos $M\chi_1^0 = 97.62 \text{GeV}$ $M\chi_2^0 = 147.54 \text{GeV}$ $M\chi_3^0 = 405.29 \text{GeV}$ $M\chi_4^0 = 417.79 \text{GeV}$

Sleptons

 $m\tilde{e}_1 = 163.22 \text{GeV}$ $m\tilde{e}_2 = 187.37 \text{GeV}$ $\cos \theta_e = 9.1 \times 10^{-5}$ $m\tilde{v}_e = 169.64 \text{GeV}$

 $m\tilde{\mu}_{1} = 163.19 \text{GeV}$ $m\tilde{\mu}_{2} = 187.38 \text{GeV}$ $\cos \theta_{\mu} = 0.019$ $m\tilde{\nu}_{\mu} = 169.64 \text{GeV}$ $m \tilde{\tau}_1 = 150.07 \text{GeV}$ $m \tilde{\tau}_2 = 190.39 \text{GeV}$ $\cos \theta_{\tau} = 0.271$ $m \tilde{\nu}_{\tau} = 170.02 \text{GeV}$

Squarks

 $m\widetilde{u}_1 = 506.48 \text{GeV}$ $m\widetilde{u}_2 = 524.14 \text{GeV}$ $\cos \theta_u = 9.4 \times 10^{-5}$ $m\tilde{c}_1 = 506.47 \text{GeV}$ $m\tilde{c}_2 = 524.16 \text{GeV}$ $\cos \theta_c = 0.033$ $m\tilde{t_1} = 345.37 \text{GeV}$ $m\tilde{t_2} = 556.78 \text{GeV}$ $\cos \theta_t = 0.5567$

 $m\widetilde{d}_1 = 506.07 \,\mathrm{GeV}$ $m\widetilde{d}_2 = 530.14 \,\mathrm{GeV}$ $\cos \theta_d = 8.5 \times 10^{-4}$

 $m\widetilde{s}_1 = 506.07 \text{GeV}$ $m\widetilde{s}_2 = 530.14 \text{GeV}$ $\cos \theta_s = 1.6 \times 10^{-5}$ $m\widetilde{b}_1 = 469.43 \text{GeV}$ $m\widetilde{b}_2 = 721.69 \text{GeV}$ $\cos \theta_b = 0.9266$