POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

H. Eberl

Institute for High Energy Physics Austrian Academy of Sciences Vienna

Tools 2008, MPI Munich, July 2008

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Outline

- 1 Mo
 - Motivation
 - Challenging experimental accuracy
- 2 Underlying works
- 3 Outline of the calc.
 - Tree-level mass matrices
 - Pole mass to two loop order $\mathcal{O}(\alpha \alpha_{S}, Y^{4}, \alpha_{S}Y^{2})$
 - The perturbative expansion
 - Automatisms vs. generic calculations
 - Diagrammatics
 - Checks
- 4 Numerical results
 - Two scenarios
- 5 Description of Polxino
- 6 Conclusion & Outlook

 Motivation
 Underlying works
 Outline of the calc.
 Numerical results
 Description of Polxino
 Conclusion & Outlook

 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •</td

challenging experimental accuracy

 Accuracy at future collider experiments at the ILC and LHC is quite challenging. The physics interplay has been worked out by the LHC/LC study group [G. Weiglein et al., 2004]

accuracy from experiment at LHC + ILC (SPS1a')

Particle	Mass	"LHC"	"ILC"	"LHC+ILC"
$\tilde{\chi}_1^0$	97.7	4.8	0.05	0.05
$\tilde{\chi}_2^0$	183.9	4.7	1.2	0.08
$\tilde{\chi}_1^{\pm}$	183.7		0.55	0.55
\tilde{q}_R	547.2	7 – 12	_	5 - 11
\tilde{q}_L	564.7	8.7	_	4.9
ĝ	607.1	8.0	_	6.5

[SPA, J. A. Aguilar-Saavedra et al., 2005], all numbers in GeV

• LHC
$$\sim m_{\chi_1^0}^2 - m_{\chi_2^0}^2$$
, ILC $\sim m_{\chi_1^0}$

 \bullet relate observables to $\overline{\mathrm{DR}}$ -input at the two-loop level

- "Two-loop SUSY QCD corrections to the neutralino masses in the MSSM" by R. Schöfbeck and H. Eberl, PLB 649 (2007) 67, arXiv:0612276 [hep-ph].
- "Two-loop SUSY QCD corrections to the chargino masses in the MSSM" by R. Schöfbeck and H. Eberl, EPJC 53 (2008) 621, arXiv:0706.0781 [hep-ph].
- "Leading two-loop Yukawa corrections to the pole masses of SUSY fermions in the MSSM" by R. Schöfbeck and H. Eberl, NPB 798 (2008) 146, arXiv:0711.2731 [hep-ph].
- "Precise predictions for the masses of supersymmetric fermions including two-loop corrections" by R. Schöfbeck, Vienna 2008, PhD thesis http://wwwhephy.oeaw.ac.at/pw3/theory/susy/diss_Schoefbeck_R.p will be put to the arXiv soon

- "Two-loop SUSY QCD corrections to the neutralino masses in the MSSM" by R. Schöfbeck and H. Eberl, PLB 649 (2007) 67, arXiv:0612276 [hep-ph].
- "Two-loop SUSY QCD corrections to the chargino masses in the MSSM" by R. Schöfbeck and H. Eberl, EPJC 53 (2008) 621, arXiv:0706.0781 [hep-ph].
- "Leading two-loop Yukawa corrections to the pole masses of SUSY fermions in the MSSM" by R. Schöfbeck and H. Eberl, NPB 798 (2008) 146, arXiv:0711.2731 [hep-ph].
- "Precise predictions for the masses of supersymmetric fermions including two-loop corrections" by R. Schöfbeck, Vienna 2008, PhD thesis http://wwwhephy.oeaw.ac.at/pw3/theory/susy/diss_Schoefbeck_R.p will be put to the arXiv soon

- "Two-loop SUSY QCD corrections to the neutralino masses in the MSSM" by R. Schöfbeck and H. Eberl, PLB 649 (2007) 67, arXiv:0612276 [hep-ph].
- "Two-loop SUSY QCD corrections to the chargino masses in the MSSM" by R. Schöfbeck and H. Eberl, EPJC 53 (2008) 621, arXiv:0706.0781 [hep-ph].
- "Leading two-loop Yukawa corrections to the pole masses of SUSY fermions in the MSSM" by R. Schöfbeck and H. Eberl, NPB 798 (2008) 146, arXiv:0711.2731 [hep-ph].

 "Precise predictions for the masses of supersymmetric fermions including two-loop corrections" by R. Schöfbeck, Vienna 2008, PhD thesis http://wwwhephy.oeaw.ac.at/pw3/theory/susy/diss_Schoefbeck_R will be put to the arXiv soon

- "Two-loop SUSY QCD corrections to the neutralino masses in the MSSM" by R. Schöfbeck and H. Eberl, PLB 649 (2007) 67, arXiv:0612276 [hep-ph].
- "Two-loop SUSY QCD corrections to the chargino masses in the MSSM" by R. Schöfbeck and H. Eberl, EPJC 53 (2008) 621, arXiv:0706.0781 [hep-ph].
- "Leading two-loop Yukawa corrections to the pole masses of SUSY fermions in the MSSM" by R. Schöfbeck and H. Eberl, NPB 798 (2008) 146, arXiv:0711.2731 [hep-ph].
- "Precise predictions for the masses of supersymmetric fermions including two-loop corrections" by R. Schöfbeck, Vienna 2008, PhD thesis http://wwwhephy.oeaw.ac.at/pw3/theory/susy/diss_Schoefbeck_R.pdf will be put to the arXiv soon

Outline of the calculation

H. Eberl

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Tree-level mass matrices

Chargino mass matrix at tree level

$$\begin{array}{lcl} X & = & \left(\begin{array}{cc} M_2 & \sqrt{2}M_W \sin\beta \\ \sqrt{2}M_W \cos\beta & \mu \end{array} \right) \\ M_D^{\tilde{\chi}^+} & = & U^* X V^\dagger = \operatorname{diag}(m_{\tilde{\chi}_1^+}, m_{\tilde{\chi}_2^+}) \end{array}$$

Neutralino mass matrix at tree level

$$\begin{split} Y &= \begin{pmatrix} M_{\mathbf{1}} & & \text{sym.} \\ 0 & M_{\mathbf{2}} & & \\ -M_Z \cos\beta \sin\theta_W & M_Z \cos\beta \cos\theta_W & 0 \\ M_Z \sin\beta \sin\theta_W & -M_Z \sin\beta \cos\theta_W & -\mu & 0 \end{pmatrix} \\ M_D^{\tilde{\chi}^0} &= & N^* Y N^\dagger = \text{diag}(m_{\tilde{\chi}_{\mathbf{1}}^0}, m_{\tilde{\chi}_{\mathbf{2}}^0}, m_{\tilde{\chi}_{\mathbf{3}}^0}, m_{\tilde{\chi}_{\mathbf{4}}^0}) \end{split}$$

pole mass to two loop order I

renormalized 2-point function $\Gamma^{(2)\tilde{\chi}\tilde{\chi}}$

$$\begin{aligned} G_{\tilde{\chi}\tilde{\chi}}^{(2)-1} &= -i\Gamma^{(2)\tilde{\chi}\tilde{\chi}} = -i\left(\begin{array}{cc} -M_D + \hat{\Sigma}_m^L(s) & \sigma \cdot k(1 + \hat{\Sigma}_k^R(s)) \\ \bar{\sigma} \cdot k(1 + \hat{\Sigma}_k^L(s)) & -M_D^{\dagger} + \hat{\Sigma}_m^R(s) \end{array}\right) \\ s &= k^2 \end{aligned}$$

Pole mass condition

$$0 = \det\left(s - \left(M_D - \hat{\Sigma}_m^L(s)\right) \cdot \left(1 + \hat{\Sigma}_k^L(s)\right)^{-1} \cdot \left(M_D^{\dagger} - \hat{\Sigma}_m^R(s)\right) \cdot \left(1 + \hat{\Sigma}_k^R(s)\right)^{-1}\right)$$

Iterative solution to two-loop order

$$\begin{split} s_{i,pole} &= |m_{\tilde{\chi}_i}|^2 - \delta m_{\tilde{\chi}_i}^{2(1)} - \delta m_{\tilde{\chi}_i}^{2(2)} \text{ with } \\ \delta m_{\tilde{\chi}_i}^{2(1)} &= \Pi_{ii}^{(1)} \quad \text{and} \quad \delta m_{\tilde{\chi}_i}^{2(2)} = \Pi_{ii}^{(2)} - \Pi_{ii}^{(1)} \frac{\partial \Pi_{ii}^{(1)}}{\partial s} - \sum_{i \neq i} \frac{\Pi_{ii}^{(1)} \Pi_{ji}^{(1)}}{m_i^2 - m_i^2} \end{split}$$

pole mass to two loop order I

renormalized 2-point function $\Gamma^{(2)\tilde{\chi}\tilde{\chi}}$

$$\begin{aligned} G_{\tilde{\chi}\tilde{\chi}}^{(2)-1} &= -i\Gamma^{(2)\tilde{\chi}\tilde{\chi}} = -i\left(\begin{array}{cc} -M_D + \hat{\Sigma}_m^L(s) & \sigma \cdot k(1 + \hat{\Sigma}_k^R(s)) \\ \bar{\sigma} \cdot k(1 + \hat{\Sigma}_k^L(s)) & -M_D^{\dagger} + \hat{\Sigma}_m^R(s) \end{array}\right) \\ s &= k^2 \end{aligned}$$

Pole mass condition

$$0 = \det\left(s - \left(M_D - \hat{\Sigma}_m^L(s)\right) \cdot \left(1 + \hat{\Sigma}_k^L(s)\right)^{-1} \cdot \left(M_D^{\dagger} - \hat{\Sigma}_m^R(s)\right) \cdot \left(1 + \hat{\Sigma}_k^R(s)\right)^{-1}\right)$$

Iterative solution to two-loop order

$$\begin{split} s_{i,pole} &= |m_{\tilde{\chi}_i}|^2 - \delta m_{\tilde{\chi}_i}^{2(1)} - \delta m_{\tilde{\chi}_i}^{2(2)} \text{ with } \\ \delta m_{\tilde{\chi}_i}^{2(1)} &= \Pi_{ii}^{(1)} \quad \text{and} \quad \delta m_{\tilde{\chi}_i}^{2(2)} = \Pi_{ii}^{(2)} - \Pi_{ii}^{(1)} \frac{\partial \Pi_{ii}^{(1)}}{\partial s} - \sum_{i \neq i} \frac{\Pi_{ii}^{(1)} \Pi_{ji}^{(1)}}{m_i^2 - m_i^2} \end{split}$$

pole mass to two loop order I

renormalized 2-point function $\Gamma^{(2)\tilde{\chi}\tilde{\chi}}$

$$\begin{aligned} G_{\tilde{\chi}\tilde{\chi}}^{(2)-1} &= -i\Gamma^{(2)\tilde{\chi}\tilde{\chi}} = -i\left(\begin{array}{cc} -M_D + \hat{\Sigma}_m^L(s) & \sigma \cdot k(1 + \hat{\Sigma}_k^R(s)) \\ \bar{\sigma} \cdot k(1 + \hat{\Sigma}_k^L(s)) & -M_D^{\dagger} + \hat{\Sigma}_m^R(s) \end{array}\right) \\ s &= k^2 \end{aligned}$$

Pole mass condition

$$0 = \det\left(s - \left(M_D - \hat{\Sigma}_m^L(s)\right) \cdot \left(1 + \hat{\Sigma}_k^L(s)\right)^{-1} \cdot \left(M_D^{\dagger} - \hat{\Sigma}_m^R(s)\right) \cdot \left(1 + \hat{\Sigma}_k^R(s)\right)^{-1}\right)$$

Iterative solution to two-loop order

$$\begin{split} s_{i,pole} &= |m_{\tilde{\chi}_i}|^2 - \delta m_{\tilde{\chi}_i}^{2(1)} - \delta m_{\tilde{\chi}_i}^{2(2)} \text{ with } \\ \delta m_{\tilde{\chi}_i}^{2(1)} &= \Pi_{ii}^{(1)} \quad \text{and} \quad \delta m_{\tilde{\chi}_i}^{2(2)} = \Pi_{ii}^{(2)} - \Pi_{ii}^{(1)} \frac{\partial \Pi_{ii}^{(1)}}{\partial s} - \sum_{i \neq j} \frac{\Pi_{ij}^{(1)} \Pi_{ji}^{(1)}}{m_i^2 - m_j^2} \end{split}$$

pole mass to two loop order II

$$\Pi_{ij}^{(1)} = m_i m_j^{\dagger} \hat{\Sigma}_k^{(1)L}{}_{ij} + |m_j|^2 \hat{\Sigma}_k^{(1)R}{}_{ij} + m_j^{\dagger} \hat{\Sigma}_m^{(1)L}{}_{ij} + m_i \hat{\Sigma}_m^{(1)R}{}_{ij}$$

$$\begin{aligned} \Pi_{ii}^{(2)} &= m_i^{\dagger} \hat{\Sigma}_m^{(2)L}{}_{ii} + m_i \hat{\Sigma}_m^{(2)R}{}_{ii} + |m_i|^2 (\hat{\Sigma}_k^{(2)L}{}_{ii} + \hat{\Sigma}_k^{(2)R}{}_{ii}) \\ &- \left(|m_i|^2 \left(\sum_{k}^{(1)R}{}_{ij} \sum_{k}^{(1)R}{}_{ji} + \sum_{k}^{(1)L}{}_{ij} \sum_{k}^{(1)L}{}_{ji} \right) + m_i^{\dagger} (\sum_{k}^{(1)R}{}_{ij} \sum_{m}^{(1)L}{}_{ji} + \sum_{m}^{(1)L}{}_{ij} \sum_{k}^{(1)L}{}_{ji}) \\ &+ m_i \sum_{k}^{(1)L}{}_{ij} \sum_{m}^{(1)R}{}_{ji} + m_j \sum_{k}^{(1)R}{}_{ij} \sum_{m}^{(1)R}{}_{ji} + m_i^{\dagger} m_j \sum_{k}^{(1)R}{}_{ij} \sum_{ij}^{(1)L}{}_{ji} + \sum_{m}^{(1)L}{}_{ij} \sum_{m}^{(1)R}{}_{ji}) \\ \end{aligned}$$

with all selfenergies evaluated at $s = |m_i|^2$.

- regularization: DRED
 - gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY
- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_e parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

 \bullet regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

• renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)

• subtract $1/\epsilon$ -piece

 absorb unphysical m_e parameter in sfermion mass parameters [Martin '01]

- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge

Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

- \bullet regularization: DRED
 - gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY
- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge

Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge

Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge

Landau (R_{ξ=0}) gauge for massive vectors
 Feynman (R_ξ) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau $(R_{\xi=0})$ gauge for massive vectors
 - Feynman (R_{ξ}) gauge for the gluon

• regularization: DRED

gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY

- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau $(R_{\xi=0})$ gauge for massive vectors
 - Feynman (R_{ξ}) gauge for the gluon

- regularization: DRED
 - gauge fields come with unphysical scalar fields (ϵ -scalars) to restore the counting of DOF for SUSY
- renormalization: $\overline{\mathrm{DR}}$ ' ($\overline{\mathrm{DR}}$)
 - subtract $1/\epsilon$ -piece
 - absorb unphysical m_{ϵ} parameter in sfermion mass parameters [Martin '01]
- IR-regulating mass for massless vectors
- EWSB VEVs
 - expand around the loop corrected potential
 - no tadpoles needed
- gauge
 - Landau $(R_{\xi=0})$ gauge for massive vectors
 - Feynman (R_{ξ}) gauge for the gluon

A sidenote on the approaches How to do tensor reduction best

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

A sidenote on the approaches How to do tensor reduction best

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

A sidenote on the approaches How to do tensor reduction best

- use CAS (Mathematica) to design one-for-all tools producing auto-generated code
 - + use for all kinds of particles, not only fermions
 - + no inherent restriction on scheme, gauge, ...
 - + disentangle graphs and counter-term contributions
 - complicated code
 - - rather slow in compilation and at runtime
- using generic once-and-for-all results
 - + simple code
 - + very fast in programming and execution
 - - a little less flexible
 - + already available "gluinopole.c" [S.P. Martin, '05]

we did both!

(and happily, the results agree precisely)

The hard(er) way CAS based approach

Generation of Diagrams

- FeynArts 3.2 (2 · (36 + 128) diagrams)[J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98
 - Taylor expansion of Tarcer basis integrals in d 4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble
 - \Rightarrow completely independent calculation

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

The hard(er) way CAS based approach

Generation of Diagrams

- FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98
 - Taylor expansion of Tarcer basis integrals in d 4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble
 - \Rightarrow completely independent calculation

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]

Analytic simplification

- conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
- tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
- Taylor expansion of Tarcer basis integrals in d 4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d 4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d 4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d-4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d-4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 (2 · (36 + 128) diagrams)[J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d-4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 $(2 \cdot (36 + 128) \text{ diagrams})$ [J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d-4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 (2 · (36 + 128) diagrams)[J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d-4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble

 \Rightarrow completely independent calculation up to the evaluation of the basis integrals

The hard(er) way CAS based approach

- Generation of Diagrams
 - FeynArts 3.2 (2 · (36 + 128) diagrams)[J.Küblbeck, T. Hahn, et. al, '90]
- Analytic simplification
 - conversion to FeynCalc 4.0.2 and evaluation of color and Dirac traces
 - tensor reduction using Tarcer [R. Mertig, R. Scharf, '98]
 - Taylor expansion of Tarcer basis integrals in d-4 to scalar basis integrals
- Numerical evaluation
 - auto-creating Fortran code calling TSIL basis integrals [S.P. Martin and D.G. Robertson, '05]
 - use some FormCalc subroutines for calculating the SUSY spectra
 - use two-loop methods also for one-loop integrals by multiplying with some artificial vacuum bubble
- \Rightarrow completely independent calculation $_{\rm up \ to \ the \ evaluation \ of \ the \ basis \ integrals}$

Generating Amplitudes using FeynArts

<u>Neutralinos</u>

Charginos

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Two loop SQCD diagrams for neutralinos

Two loop Yukawa corr. diagrams for neutralinos

Two loop SQCD diagrams for charginos

H. Eberl

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Two loop Yukawa corr. diagrams for charginos

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on

 $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$

• one-loop results agree with previous work [W. Öller '03, Τ. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, 105]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- ullet explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on

 $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$

• one-loop results agree with previous work [W. Öller '03, Τ. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on

 $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$

• one-loop results agree with previous work [W. Öller '03, Τ. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $tr(Y^{\dagger}Y) = tr(M^{\dagger}M_{\rm P})$
- one-loop results agree with previous work [W. Öller '03, Τ. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, 105]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_{D}^{\dagger}M_{D})$

• one-loop results agree with previous work [W. Öller '03, Τ. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, 105]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$
- one-loop results agree with previous work [W. Öller '03, T. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

• SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, 105]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$
- one-loop results agree with previous work [W. Öller '03, T. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$
- one-loop results agree with previous work [W. Öller '03, T. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

 SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$
- one-loop results agree with previous work [W. Öller '03, T. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

• SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Analytic Checks

- gauge parameter independence of the gluon gauge parameter
- explicit cancellation of m_ϵ contributions in $\overline{\mathrm{DR}}$ '
- IR finiteness by extraction of the IR divergent parts in each diagram
- rather non-trivial: RGE check (UV finiteness) on $\operatorname{tr}(Y^{\dagger}Y) = \operatorname{tr}(M_D^{\dagger}M_D)$
- one-loop results agree with previous work [W. Öller '03, T. Fritzsche '04]

Checks on the Numerics

• RGE check of mass shifts $\delta m_{\tilde{\chi}_i}$ against Spheno

[W. Porod, '03]

Check on the whole strategy

• SQCD corrections to the gluino pole mass agree with known result [S.P. Martin, '05]

Numerics

H. Eberl

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

	Numerical results	

Two scenarios

• Gaugino scenario:

the SPS1a' benchmark point J.A. Aguilar-Saavedra '05 et.al., Porod '03 The $\overline{\rm DR}$ SUSY Lagrangian parameters at the scale $Q=1~{\rm TeV}$

Parameter	SPS1a' value	Parameter	SPS1a' value
g′	0.3636	M ₁	103.3
g	0.6479	M ₂	193.2
g_s	1.0844	<i>M</i> ₃	571.7
$Y_{ au}$	0.1034	$A_{ au}$	-445.2
Y_t	0.8678	A _t	-565.1
Y _b	0.1354	A _b	-943.4
μ	401.6	aneta	10.0

• Higgsino scenario: $\mu = 130 \text{ GeV}, M_2 = 400 \text{ GeV}, M_1 = M_2/2,$ other parameters from SPS1a'

Gaugino scenario

- Neutralino masses [GeV]
 - $m_{\tilde{\chi}_1^0} = 100.68 3.04 0.07 + 0.00$
 - $m_{\tilde{\chi}_2^0} = 181.32 \pm 2.83 0.19 \pm 0.00$
 - $m_{\tilde{\chi}_{2}^{9}} = 407.35 1.65 + 0.16 + 0.30$
 - $m_{\tilde{\chi}^0_A} = 421.85 3.14 + 0.05 + 0.83$
- Chargino masses [GeV]
 - $m_{\tilde{\chi}_1^+} = 180.94 + 2.98 0.19 + 0.00$
 - $m_{\tilde{\chi}_2^+} = 422.27 2.02 0.16 + 0.59$
- Gluino mass [GeV]
 - $m_{\tilde{g}} = 572.33 + 39.14 + 11.06 + 0.00$

Gaugino scenario

- Neutralino masses [GeV]
 - $m_{\tilde{\chi}_1^0} = 100.68 3.04 0.07 + 0.00$
 - $m_{\tilde{\chi}_{2}^{9}} = 181.32 + 2.83 0.19 + 0.00$
 - $m_{\tilde{\chi}^0_3} = 407.35 1.65 + 0.16 + 0.30$
 - $m_{\tilde{\chi}^0_4} = 421.85 3.14 + 0.05 + 0.83$
- Chargino masses [GeV]
 - $m_{\tilde{\chi}_1^+} = 180.94 + 2.98 0.19 + 0.00$ $m_{\tilde{\chi}_1^+} = 422.27 - 2.02 - 0.16 + 0.59$
- Gluino mass [GeV] $m_{\tilde{g}} = 572.33 + 39.14 + 11.06 + 0.00$

Gaugino scenario

• Neutralino masses [GeV]

- $m_{\tilde{\chi}_1^0} = 100.68 3.04 0.07 + 0.00$
- $m_{\tilde{\chi}_2^9} = 181.32 + 2.83 0.19 + 0.00$
- $m_{\tilde{\chi}_3^0} = 407.35 1.65 + 0.16 + 0.30$
- $m_{\tilde{\chi}_4^0} = 421.85 3.14 + 0.05 + 0.83$

• Chargino masses [GeV] $m_{\tilde{\chi}_1^+} = 180.94 + 2.98 - 0.19 + 0.00$ $m_{\tilde{\chi}_2^+} = 422.27 - 2.02 - 0.16 + 0.59$

• Gluino mass [GeV] $m_{\tilde{g}} = 572.33 + 39.14 + 11.06 + 0.00$

Gaugino scenario

$$m_{\tilde{\chi}_1^0} = 100.68 - 3.04 - 0.07 + 0.00$$

$$m_{\tilde{\chi}_2^9} = 181.32 + 2.83 - 0.19 + 0.00$$

$$m_{\tilde{\chi}_3^0} = 407.35 - 1.65 + 0.16 + 0.30$$

$$m_{\tilde{\chi}_{4}^{0}} = 421.85 - 3.14 + 0.05 + 0.83$$

• Chargino masses [GeV] $m_{\tilde{\chi}_1^+} = 180.94 + 2.98 - 0.19 + 0.00$ $m_{\tilde{\chi}_2^+} = 422.27 - 2.02 - 0.16 + 0.59$

• Gluino mass [GeV]
$$m_{\tilde{g}} = 572.33 + 39.14 + 11.06 + 0.00$$

Gaugino scenario

$$m_{\tilde{\chi}_1^0} = 100.68 - 3.04 - 0.07 + 0.00$$

$$m_{\tilde{\chi}^0_2} = 181.32 + 2.83 - 0.19 + 0.00$$

$$m_{\tilde{\chi}^{\circ}_{3}} = 407.35 - 1.65 + 0.16 + 0.30$$

$$m_{ ilde{\chi}^{0}_{4}}=~421.85-3.14~+0.05+0.83$$

• Chargino masses [GeV]

$$m_{\tilde{\chi}_1^+} = 180.94 + 2.98 - 0.19 + 0.00$$

 $m_{\tilde{\chi}_2^+} = 422.27 - 2.02 - 0.16 + 0.59$

• Gluino mass [GeV]
$$m_{\tilde{g}} = 572.33 + 39.14 + 11.06 + 0.00$$

Higgsino scenario

• Neutralino masses [GeV]

- $m_{ ilde{\chi}_1^{m{q}}} = \ 106.54 8.69 \ -2.19 \ +2.11$
- $m_{\tilde{\chi}_{1}^{9}} = 137.22 + 1.92 + 1.52 1.36$
- $m_{\tilde{\chi}_{2}^{0}} = 212.81 5.66 1.85 + 1.88$
- $m_{\tilde{\chi}^0_A} = 417.87 3.97 1.90 + 1.94$

• Chargino masses [GeV]

- $m_{\tilde{\chi}_1^+} = 121.54 + 8.63 1.42 + 1.36$ $m_{\pi^+} = 417.75 - 9.16 - 1.72 + 1.74$
- Gluino mass [GeV]
 m₇ = 572 33 ±39 11 ±11 08 ±

Higgsino scenario

- Neutralino masses [GeV]
- Chargino masses [GeV] $m_{\tilde{\chi}_1^+} = 121.54 + 8.63 - 1.42 + 1.36$ $m_{\tilde{\chi}_2^+} = 417.75 - 9.16 - 1.72 + 1.74$
- Gluino mass [GeV] $m_{\tilde{g}} = 572.33 + 39.11 + 11.08 - 0.15$

Higgsino scenario

- Neutralino masses [GeV]
 - $m_{\tilde{\chi}_1^0} = 106.54 8.69 2.19 + 2.11$
 - $m_{\tilde{\chi}^0_2} = 137.22 + 1.92 + 1.52 1.36$
 - $m_{\tilde{\chi}_3^0} = 212.81 5.66 1.85 + 1.88$ $m_{\tilde{\chi}_3^0} = 417.87 - 3.97 - 1.90 + 1.94$
- Chargino masses [GeV] $m_{\tilde{\chi}_1^+} = 121.54 + 8.63 - 1.42 + 1.36$ $m_{\tilde{\chi}_2^+} = 417.75 - 9.16 - 1.72 + 1.74$
- Gluino mass [GeV] $m_{\tilde{g}} = 572.33 + 39.11 + 11.08 - 0.15$

Higgsino scenario

• Neutralino masses [GeV]

$$m_{\tilde{\chi}_1^0} = 106.54 - 8.69 - 2.19 + 2.1$$

 $m_{\tilde{\chi}_2^0} = 137.22 + 1.92 + 1.52 - 1.36$
 $m_{\tilde{\chi}_3^0} = 212.81 - 5.66 - 1.85 + 1.88$
 $m_{\tilde{\chi}_4^0} = 417.87 - 3.97 - 1.90 + 1.94$

• Chargino masses [GeV]

$$m_{\tilde{\chi}_1^+} = 121.54 + 8.63 - 1.42 + 1.36$$

 $m_{\tilde{\chi}_2^+} = 417.75 - 9.16 - 1.72 + 1.74$

• Gluino mass [GeV] $m_{\tilde{g}} = 572.33 + 39.11 + 11.08 - 0.15$

Higgsino scenario

• Neutralino masses [GeV]

$$m_{\tilde{\chi}_1^0} = 106.54 - 8.69 - 2.19 + 2.12$$

 $m_{\tilde{\chi}_2^0} = 137.22 + 1.92 + 1.52 - 1.36$
 $m_{\tilde{\chi}_3^0} = 212.81 - 5.66 - 1.85 + 1.88$
 $m_{\tilde{\chi}_4^0} = 417.87 - 3.97 - 1.90 + 1.94$

• Chargino masses [GeV]

$$m_{\tilde{\chi}_1^+} = 121.54 + 8.63 - 1.42 + 1.36$$

 $m_{\tilde{\chi}_2^+} = 417.75 - 9.16 - 1.72 + 1.74$

• Gluino mass [GeV] $m_{\tilde{g}} = 572.33 + 39.11 + 11.08 - 0.15$

Description of Polxino

H. Eberl

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

is a C-program

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

is a C-program

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

is a C-program

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

• loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point

 If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write
 mssm mue = 130 L· mssm M1 = 200 L· mssm M2 = 400 L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

```
re-diagonalizes mixing systems
```

(some routines taken over from LoopTools) [Hahn, Perez '98]

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

- Needs the Two-loop Self-energy Integral Library TSIL http://zippy.physics.nui.edu/TSIL
- Central data C-struct is the MSSM_DATA mssm
- provide interface to

SUSY Les Houches Accord 1.0 [Skands et.al. '03]

e.g. SPheno produces a .spc file

- loadSPC("SPheno.spc",&mssm); loads the file into the struct As an example, the file SPheno.spc contains the data for the SPS1a' point
- If there is need, re-adjust parameters manually e.g. for our higgsino scenario, we write

mssm.mue = 130.L; mssm.M1 = 200.L; mssm.M2 = 400.L

• mssm_digest(&mssm)

re-diagonalizes mixing systems

(some routines taken over from LoopTools) [Hahn, Perez '98]

mssm_print(mssm);
 prints out all the information stored in the struct mssm

H. Eberl

Basic parameters of the struct MSSM_DATA

MSSM_DATA member	description
gs, g1, g2	gauge coupling constants
mue	μ -parameter
ТВ	aneta
VEV	$\sqrt{v_1^2+v_2^2}$, v_i are the Higgs VEVs
MA02	squared mass of A_0
MQU[3], MQD[3], MLE[3]	quark and lepton-masses
M1, M2, M3	gaugino masses
MSL[3], MSE[3], MSQ[3], MSU[3], MSD[3]	bilinear soft Susy breaking parameters
Af[4][3]	trilinear soft Susy breaking parameters

The subroutines using generic functions

• generic one- and two-loop functions were extracted from gluinopole.c [S.P.Martin '05]

getneupole((int) i, (MSSM_DATA), (POL_REAL*) Mpole1, (POL_REAL*) Gamma1, (POL_REAL*) Mpole2, (POL_REAL*) Gamma2); getchpole((int) i, (MSSM_DATA), (POL_REAL*) Mpole1, (POL_REAL*) Gamma1, (POL_REAL*) Mpole2, (POL_REAL*) Gamma2); getgluinopole((MSSM_DATA), (POL_REAL*) Mpole1, (POL_REAL*) Gamma1, (POL_REAL*) Mpole2, (POL_REAL*) Gamma1, (POL_REAL*) Mpole2, (POL_REAL*) Gamma1;

calculate the one- and two-loop pole masses of chargino (neutralino) *i* or the gluino, stores the one- and two-loop results in the variables **Mpole1** resp. **Mpole2**.

The tree-level and one-loop widths are stored in ${f Gamma1}$ and ${f Gamma2}$

The subroutines using generic functions

• generic one- and two-loop functions were extracted from gluinopole.c [S.P.Martin '05]

calculate the one- and two-loop pole masses of chargino (neutralino) *i* or the gluino, stores the one- and two-loop results in the variables **Mpole1** resp. **Mpole2**. The tree-level and one-loop widths are stored in **Gamma1** and **Gamma2**

The subroutines using generic functions

• generic one- and two-loop functions were extracted from gluinopole.c [S.P.Martin '05]

```
getneupole((int) i, (MSSM_DATA), (POL_REAL*) Mpole1, (POL_REAL*) Gamma1,

(POL_REAL*) Mpole2, (POL_REAL*) Gamma2);

getchpole((int) i, (MSSM_DATA), (POL_REAL*) Mpole1, (POL_REAL*) Gamma1,

(POL_REAL*) Mpole2, (POL_REAL*) Gamma1,

(POL_REAL*) Mpole2, (POL_REAL*) Gamma1,

(POL_REAL*) Mpole2, (POL_REAL*) Gamma1,

(POL_REAL*) Mpole2, (POL_REAL*) Gamma2);
```

calculate the one- and two-loop pole masses of chargino (neutralino) *i* or the gluino, stores the one- and two-loop results in the variables **Mpole1** resp. **Mpole2**. The tree-level and one-loop widths are stored in **Gamma1** and **Gamma2**

H. Eberl

The pole mass calculator for χ -inos

o can be downloaded from http://wwwhephy.oeaw.ac.at/tools/polxing

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

The pole mass calculator for χ -inos

o can be downloaded from http://wwwhephy.oeaw.ac.at/tools/polxino

Polxino

o can be downloaded from http://wwwhephy.oeaw.ac.at/tools/polxing

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Polxino

• can be downloaded from http://wwwhephy.oeaw.ac.at/tools/polxino

POLXINO: Neutralino, chargino and gluino two-loop pole mass calculator

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- $\bullet\,$ For higgsino-like $\tilde{\chi}'{\rm s}$ two-loop Yukawa corr. have to be included too

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- $\bullet\,$ For higgsino-like $\tilde{\chi}'{\rm s}$ two-loop Yukawa corr. have to be included too

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- $\bullet\,$ For higgsino-like $\tilde{\chi}'{\rm s}$ two-loop Yukawa corr. have to be included too

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

Results:

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- For higgsino-like $\tilde{\chi}$'s two-loop Yukawa corr. have to be included too

H. Eberl

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- For higgsino-like $\tilde{\chi}$'s two-loop Yukawa corr. have to be included too

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- For higgsino-like $\tilde{\chi}' {\rm s}$ two-loop Yukawa corr. have to be included too

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- For higgsino-like $\tilde{\chi}$'s two-loop Yukawa corr. have to be included too

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

Results:

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- For higgsino-like $\tilde{\chi}$'s two-loop Yukawa corr. have to be included too

H. Eberl

Motivation:

- high precision experiments demand pole mass calculations to two-loop order [LHC/LC Study Group]
- combining existing software packages it was possible to calculate the leading NNLO corrections (SQCD + Yukawas)
- auto-generated code: FeynArts→FeynCalc→Tarcer, Fortran, TSIL, LoopTools
- agrees with Polxino (using generic formulae)

Results:

- the remaining renormalization scale dependence is weakened
- For gaugino-like $\tilde{\chi}$'s two-loop SQCD is mandatory
- $\bullet\,$ For higgsino-like $\tilde{\chi}$'s two-loop Yukawa corr. have to be included too

H. Eberl

Outlook

Full two-loop calculation:

- best of two worlds approach combine the strength of
 - existing Mathematica tools for diagram generation
 - well-tested generic results

to a package capable of doing the full two-loop calculation ($2\cdot 2500$ diagrams)

Outlook

Full two-loop calculation:

- best of two worlds approach combine the strength of
 - existing Mathematica tools for diagram generation
 - well-tested generic results

to a package capable of doing the full two-loop calculation

 $(2 \cdot 2500 \text{ diagrams})$

Thank you for our attention!

Here the address for the tools again:

• http://wwwhephy.oeaw.ac.at/tools/polxino

