
Evaluation of Transactional Memory and Other
Techniques to Improve the Performance of Algorithms

in High Energy Physics for New Processor Architectures

Philipp Schoppe

CERN PH-SFT / University of Applied Sciences Münster

ROOT Team Meeting November 28, 2014

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 1/22

Agenda

Traditional Concurrency Control
Introduction
Mutual Exclusion
Mutex Drawbacks
Lock-free Data Structures
Painful State of the Art

Transactional Memory
Introduction
Major Benefits
Status
Performance

Conclusion and Outlook

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 2/22

Traditional Concurrency Control

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 3/22

Traditional Concurrency Control
Introduction

I Managing shared resources is critical
I Ensure ordered access to shared

data
I Atomic hardware instructions

I Test-and-set
I atomic-increment
I CAS
I LL/SC

I Memory barriers
I acquire barrier
I release barrier
I full barrier

Thread 1 Thread 2

read counter

increment counter

write counter

read counter

increment counter

write counter

Shared counter

 value

0

0

0

0

1

1

time

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 4/22

Traditional Concurrency Control
Mutual Exclusion

I Avoid data races
I Critical section executed by one thread at a time
I Serialise access to shared data
I Locking

I Mutex
I Spinlock
I Readers-Writer lock

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 5/22

Traditional Concurrency Control
Mutex Drawbacks

I Deadlock
I Processes lock a set of objects

with two or more mutexes and
they each wait for the lock owned
by another thread.

I Priority inversion
I A low priority process may hold a

lock that is needed by a high
priority process

I Convoying
I A process may be descheduled or

interrupted while holding a lock.

R1

R2

P2P1

owned by

 P2

waiting for

 R2

owned by

 P1

waiting for

 R1

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 6/22

Traditional Concurrency Control
Lock-free Data Structures

I Mutual exclusion is based on blocking an active process, if necessary
⇒ Lock-free and wait-free data structures

Maurice Herlihy:

Definition (Lock-free)
A concurrent data structure is lock-free, if a process is guaranteed to complete
an operation on it after the system as a whole takes a finite number of steps.

Definition (Wait-free)
A concurrent data structure is wait-free, if each process is guaranteed to
complete an operation on it after taking a finite number of steps.

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 7/22

Traditional Concurrency Control
Lock-free Data Structures

I Mutual exclusion is based on blocking an active process, if necessary
⇒ Lock-free and wait-free data structures

Maurice Herlihy:

Definition (Lock-free)
A concurrent data structure is lock-free, if a process is guaranteed to complete
an operation on it after the system as a whole takes a finite number of steps.

Definition (Wait-free)
A concurrent data structure is wait-free, if each process is guaranteed to
complete an operation on it after taking a finite number of steps.

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 7/22

Traditional Concurrency Control
Lock-free Data Structures

I Lock-freedom has been subject to research for years
I Only few efficient and correct implementations to a very limited range of

data structures are known
I A working algorithm is almost always a publishable result
I Wait-freedom with good performance is even harder to achieve
I Extremely complex to implement!

I Herb Sutter talks:
Atomic<> Weapons: The C++ Memory Model and Modern Hardware Video

Lock-Free Programming (or, Juggling Razor Blades) Video

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 8/22

http://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://www.youtube.com/watch?v=c1gO9aB9nbs

Traditional Concurrency Control
Painful State of the Art

I Joe Duffy: Solving 11 Likely
Problems In Your Multithreaded
Code Article

I Forgotten Synchronization
I Incorrect granularity
I Read and write tearing
I Lock-free reordering
I Lock convoys
I Priority inversion
I Incomposability
I ...

Lockfree-reordering
I n i t i a l i z a t i o n :

boo l g P r i n t F l a g = f a l s e ;
i n t g P r i n t V a l u e = 0 ;

Thread 1 :
g P r i n t V a l u e = 2014 ;
g P r i n t F l a g = t r u e ;

Thread 2 :
w h i l e (g P r i n t F l a g == f a l s e) { }

s t d : : cout << g P r i n t V a l u e ;

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 9/22

http://msdn.microsoft.com/en-us/magazine/cc817398.aspx

Transactional Memory

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 10/22

Transactional Memory
Introduction

I “Transactional Memory: Architectural Support for Lock-Free Data
Structures” Paper

I Database-style transactions working on shared memory
I ACI(D)

I Atomicity: either all operations take effect, or nothing happens
I Consistency: a transaction can only commit legal results, leaving the system

in a valid state
I Isolation: operations within a transaction are hidden from other, concurrently

running transactions
I Durability: when successfully committing, a transaction’s changes are

guaranteed to be permanent
I Optimistic speculation
I Extension to the cache-coherence protocol

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 11/22

http://dl.acm.org/citation.cfm?id=165164

Transactional Memory
Major Benefits

I Makes lock-free synchronization
easily accessible

I Composability
I “Generic Programming Needs

Transactional Memory” Paper

I Easy to use

Transactional block
i n t s h a r e d d a t a [2 0] ;

i n t
s e t s h a r e d d a t a (i n t i ndex , i n t v a l u e)
{

t r a n s a c t i o n a t o m i c {
s h a r e d d a t a [i n d e x] = v a l u e ;

}
}

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 12/22

http://transact2013.cse.lehigh.edu/gottschlich.pdf

Transactional Memory
Status

I Many Software Transactional Memory (STM) libraries available
I Intel released Transactional Synchronization Extensions (TSX) in the end of

2013
I But it contains a bug ... PDF

I Velox stack Overview

I Applications
I Benchmarks
I Compilers
I Libraries, system libraries
I Kernel scheduler

I Ongoing integration effort into the C++ standard

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 13/22

http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/4th-gen-core-family-desktop-specification-update.pdf
http://www.velox-project.eu/releases

Transactional Memory
Performance

I STM deemed inefficient
I Performance is often not compared to traditional synchronization in literature
I Hardware TM as a solution?
I Evaluation of TM during my master thesis PDF

I Experimental evaluation for queue and simple histogram
I Results from other literature and research

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 14/22

http://www.lab4inf.fh-muenster.de/lab4inf/docs/thesis/MA_Philipp_Schoppe.pdf

Transactional Memory
Benchmark System

I Intel Core i7-4790, quad core CPU with eight threads
I Each core runs at 3.60 GHz
I 32 KB of L1 data cache
I 64 bytes cache line size
I 16 GB RAM

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 15/22

Transactional Memory
Benchmark Setup

I Queue and histogram
I One million enqueue↔dequeue pairs / fill operations.
I GCC TM
I Intel TSX: Restricted Transactional Memory (RTM)
I TinySTM

I Distribute work over 1-8 threads
I 10 warmup runs
I Take mean timing of 40 runs
I Regulate contention through a delay functor object

I LoadLevel::NONE [0ns]
I LoadLevel::Low [270ns]
I LoadLevel::Medium [684ns]
I LoadLevel::High [1554ns]

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 16/22

Transactional Memory
Queue Benchmark

●

● ●
●

● ● ● ●

●
●

●

●

● ● ● ●

None Low

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Threads

(M
ea

n−
) S

pe
ed

up

Datastructure
● Mutex Queue

TM Queue
RTM Queue
STM Queue
Spinlock Queue
Lockfree Queue

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 17/22

Transactional Memory
Queue Benchmark

●

●

●

●
● ● ●

●

●

●

●

●

●

●
● ●

Medium High

1

2

3

4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Threads

(M
ea

n−
) S

pe
ed

up

Datastructure
● Mutex Queue

TM Queue
RTM Queue
STM Queue
Spinlock Queue
Lockfree Queue

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 17/22

Transactional Memory
Histogram Benchmark

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

None Low

0

1

2

3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Threads

(M
ea

n−
) S

pe
ed

up

Datastructure
● Mutex Histogram

TM Histogram
RTM Histogram
STM Histogram
SpinLock Histogram

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 18/22

Transactional Memory
Histogram Benchmark

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Medium High

1

2

3

4

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Threads

(M
ea

n−
) S

pe
ed

up

Datastructure
● Mutex Histogram

TM Histogram
RTM Histogram
STM Histogram
SpinLock Histogram

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 18/22

Transactional Memory
Experimental Evaluation in Literature

I Experimental evaluation of TM, especially hardware TM is rare
I No common conclusion has been drawn w.r.t. its feasibility
I Benchmark suite Lee-TM

⇒ authors observe STM on par with coarse-grained locking Paper

I In general, STM is not outperforming conventional locking techniques
I “Peformance Evaluation of Intel TSX for High-Performance

Computing” Paper

I Sometimes outperforms even fine-grained locking solutions
I But it sometimes performs worse than STM, when not optimized

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 19/22

http://dl.acm.org/citation.cfm?id=1273029
http://dl.acm.org/citation.cfm?id=2503232

Conclusion and Outlook

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 20/22

Conclusion and Outlook

I TM feasible?
I As usual: it depends...

I Mutexes: Spend more time on debugging
I TM: Spend more time on making code faster
I New hardware implementations may improve performance
I Wait for C++ language extension and transaction safe STL

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 21/22

Thank you for your attention

Philipp Schoppe – Evaluation of Transactional Memory November 28, 2014 22/22

	Traditional Concurrency Control
	Introduction
	Mutual Exclusion
	Mutex Drawbacks
	Lock-free Data Structures
	Painful State of the Art

	Transactional Memory
	Introduction
	Major Benefits
	Status
	Performance

	Conclusion and Outlook

