Modularizing ROOT

Vassil Vassilev



C++ Modules

* |[n essence they are a compilation
optimization. Using C++ Modules is meant to
reduce the compilation times

* ‘Pre-Parsed form’ of header files



C++ Modules. Concepts.

* Define a mapping between set of header files and

libraries, via so called module maps.
Read more on: http://clang.llvm.org/docs/Modules.html|

* An example module map:
module ROOT {

module core {
header “TROOT.h”
header “Tobject.h”
//autolink libCore
export *

}

export *

}




C++ Modules. Concepts.

e Differences from the PCH

C++ modules can be attached/used in the middle of compilation, whereas the PCH needs to
be present before the compiler starts compilation. PCH is configured with a predefined set of
macros, C++ modules are flexible and macro-configurable.

* |f 2 Modules can overlap, semantic merging must happen.

The compiler must merge the declarations coming from both modules (sometimes violating
the ODR). Very complex process. Hard to implement.

module ROOT {
module core {
header “TROOT.h”

header “TObject.h”
&port *
module fictional {

Héader “TObject.h” // or anything else #including TObject.h
}

export *

}



C++ Modules. Compile-time Modules.

 Compile with clang -fmodules flag. It will
pickup any module maps on the include path
and build reusable modules. Next time one
uses a header file, its corresponding module
will be picked up, reducing compilation times.



C++ Modules. Runtime Modules.

Use compile-time C++ modules for other
purposes at ROOT’s runtime (through cling). Eg:

* As a source of reflection information;

 As a much, much better and efficient
replacement for the autoloading

* As a better replacement for the dictionaries.



Plan

We thought modules are very broken. Wrong!
* | decided to start the initial work on them,
continuing Cristina’s progress.

* Build LLVM and Clang standalone with
compile-time C++ modules enabled.

* Build ROOT with compile-time modules
enabled.

 Turn compile-time C++ modules into runtime
C++ modules.




Building LLVM & Clang with C++
modules

Got recent clang.

Created modulemaps for libc and libc++
Ran LLVM’s build

Report and fix a few issues.

All building fine now. A few patches on cfe-
commits waiting for my action.



Building ROOT with C++ modules

Got recent clang.

Created modulemaps for libc and libc++
Ran LLVM’s build

Report and fix a few issues.

All building fine now. A few patches on cfe-
commits waiting for my action.



Issues with ROOT’s (non-modular)
design

Core must be one module.
Dependencies of math_core to hist
~unny configuration macros in RooFit

nteresting implementation of truetype fonts
neader files

Dictionaries are walking beyond the edge of
the C++ standard.



ROOT builds and runs with compile-
time C++ modules

All N M SLOC builds except:
* |libhist dictionary
* VcC

e TLinearFitter (a bug waiting to be reduced and
fixed)



ROOT build times with C++ modules

on

Modules real
usr
sys

No Modules real
usr
sys

Resulting in ~¥16% compilation speedup.

10m41.357s
28m27.412s
1m21.774s

12m44.682s
36m40.274s
1m19.758s

10m32.134s
28m12.473s
1m24.633s

12m37.036s
36m33.107s
1m21.848s

10m31.730s
28m14.331s
1m24.166s

12m35.165s
36m31.370s
1m?20.773s

expect with better organized modulemap, even

nigger speedups.



ROOT compile-time C++ modules
performance

Only ~16% because:

e ¥610 modules build, which is much more than
it should be for ~90 libs

* A better modulemap/build system integration
is needed

* | believe that clang 3.6 or 3.7 will fully support
C++ modules



