Status of parasitic FE from metallic surfaces and potential destruction of emitters by µ-discharges and ion beam impact

P. Serbun, S. Lagotzky, G. Müller **FB C Department of Physics** University of Wuppertal

BERGISCHE UNIVERSITÄT

Outline

- Motivation
- Measurement techniques & samples
- Field emission results before and after cleaning
- Destruction of emitters by µ-dischages
- First results on Ar ion bombardment
- Conclusions and outlook

Motivation

- o Field emission (FE) creates "dark current" which absorbs rf energy, causes radiation, is seems to be the precursor of electric breakdown (BD);
- o In turn, BD limits the operation of accelerators and can cause irreversible damage to their physical structure;
- o The acceleration gradient for the present CLIC design is E_{acc} =100 MV/m (E_{peak} =243 MV/m) and achievable only after long conditioning of the structures [2];
- o Deep and quantitative understanding of the origin of BD processes is important;

Goal: suppression of BD by using proper surface treatments.

Task: investigation of FE from flat Cu surfaces

- What causes FE from (relevant) Cu samples?
- How to reduce/avoid FE? BMBF project 05H12PX6

Cu disc of CLIC accel. structure [1]

Surface damage due to breakdown [1]

[1] A.T. Perez & G. Arnau, "*Determination of dislocations density in Cu-OFE for CLIC project by using EBSD*", Poster, MeVArc 2013 [2] W. Wuensch, "Study of the conditioning of RF structures", Presentation, MeVArc 2015.

o **Optical Profilometer (OP)**

- white light irradiation and spectral reflection (chromatic aberration)
- 20x20 cm² scanning range in 2 cm distance
- Curved surface up to 5 cm height difference
- 2 µm (3 nm) lateral (height) resolution
- o **Further zooming by AFM**:
	- \pm 2 µm positioning relative to OP results
	- 98x98 µm² scanning range
	- 3 (1) nm lateral (height) resolution
	- contact or non-contact modes.
- \circ Clean laminar air flow (LAF) from the back
- \circ Granite plate with active damping system
- o CCD camera for fast positioning
- \circ interferometric film thickness sensor (IF)

DC field emission scanning microscope (FESM)

Provides PID-regulated **voltage scans** $V(x,y)$ @ fixed current (typ. I=1nA): E_{act} (1nA)

- **activation**, **localization** and **number density N** of emitters
- **local** U(z) and I(V) **measurements** of single emitters: $E_{on}(1 \text{ nA})$, β_{FN} , S_{FN}

- base UHV at 10-7 Pa
- exchangeable W-anodes 3…330 µm
- cathodes up to 25x25 mm²
- 3D drives:
	- stepper motor/piezo-translator (100/40 nm/step)
- cathode tilt correction: \pm 1 µm within \pm 5 mm
- gap monitored via CCD camera (1 µm resolut.)
- heat treatments (< 1200°C)
- auger electron spectroscopy (AES): chemical state
- ion gun: for local emitter cleaning
- ex-situ SEM & EDX: identification of emitting defects
- clean laminar air flow around load-lock

D. Lysenkov, G. Müller, *Int. J. of Nanotechnology* **2**, 2005.

Samples

Fabrication at CERN:

- Protection cap \circ Flat polycrystalline Cu samples of \varnothing =11 mm \circ Small hole (0.5mm) as mark to identify the emitter position in different systems (SEM/FESM)
	- o Diamond turned (**DT**) samples
	- o Additional chemical etching (**SLAC** treatment: using H_3 PO₄, HNO₃, acetic glacial acid and HCl, to remove a surface layer of 0.6 µm)

Investigation at BUW:

- Transport under Teflon[®] protection cap to avoid any surface damage and contaminations after polishing and cleaning
- Glued with SEM button on AI holder and mounted to an adapter for the FESM
- FESM adapter o Caps opened under HV or clean room (ISO5)
	- o Final cleaning (N₂, DIC)
	- o **OP**+**AFM**/**FESM**/**SEM**+**EDX** measurements

Surface quality

Samples measured with optical profilometer (OP) in the area relevant for FESM

- Slightly waved surface $(\lambda \sim 0.5 1 \text{ mm})$
- o Many ridges from DT
- o Damage layer?
-

 \circ Sample surface now very flat (\pm 0.5 µm)

- \circ Many pits (N < 18 mm⁻²) due to etching
- \circ Grain size: 1300 µm² 5.3 mm²
- \circ Average roughness: R_a/R_q = 126/145 nm \circ R_a/R_q = 150/230 nm slightly increased

FESM/SEM/EDX results

E-map for the sample DT+SLAC #1 before cleaning (1 nA, area 5x5 mm²)

SEM/EDX analysis of Cu surface:

- o 60% particulates (Al, Cl, S, Si, K)
- o 10% surface defects
- o 30% emission sites: unknown origin

• EFE is dominated by foreign particulates: cleaning the surface to reduce FE

FE activation statistics without/with N² cleaning

for two types of samples

- o Emission from surfaces without any cleaning starts at 30 MV/m
- \circ Cleaning with N₂ shows FE starting at 130 MV/m
- \circ N @ E_{peak} = 243 MV/m reduces from 229/372 cm-2 to 124 cm-2
- \circ N increases exponentially [3]: *N~ exp(1-/Eact)*

[3] S. Lagotzky, G. Müller, submitted to Nucl. Instr. Methods Phys. Res. Sect. A (2015).

Dry ice cleaning (DIC) system

- o Commercial DIC system (SJ-10, CryoSnow) installed in cleanroom (class iso 5)
- o Non-abrasive blasting where dry ice is accelerated in a pressurized air stream and directed at the surface
- o Samples/caps cleaned for 2.5 min under 90°/45° and 3 x rotated in 90° steps
- o Most particulates (> 100 nm) are removed

www.cryosnow.com

FE activation statistics after DIC cleaning

for three types of samples

- o DIC reduces N significantly
- \circ N @ E_{peak} = 243 MV/m reduces from 124 cm⁻² to 29 cm⁻²
- o Chemical etching didn't reduce N

Single emitter characteristics on DIC-cleaned samples

SEM/EDX : 57% surface defects; 12% particulates (Al, Si, W); 31% unidentified;

- o Rather stable FE
- \circ Slight jumps probably due to melting of micro-tips

- o More unstable FE
- o Changed slope at high fields due to bad electrical contact to bulk

- \circ Highest β_{FN} are caused by particulates
- \circ Most S_{FN} and β_{FN} are in a reasonable range for all types of emitters
- o Most data are correlated: $S_{FN} \sim \beta_{FN}$ ⁻²
- o No correlation at low β_{FN} : high S_{FN} values with respect to the anode size hint at other FE mechanisms like MIVand MIM-emission [4]

[4] R. V. Latham, High voltage vacuum insulation, Academic Press, London (1995).

Possible origin of breakdowns in FR structures

- \circ All emitters yielded a reduced E_{on} $\leq E_{act}$ hence, emitters can lead to strong e loading of accelerating structures if activated
- o Activation strength described by field reduction function $\rho = E_{\text{act}}/E_{\text{on}}$
- \circ 20% of emitters show $\rho > 3$ (surface defects)
- o High-p emitters would cause an emitter explosion and a BD of the cavity field

Examples: two candidates for breakdowns

o Activated between $E_{\text{act}} = 240{\text -}250 \text{ MV/m}$, $E_{\text{on}} = 54 \text{ MV/m} \rightarrow \rho = 4.62$ \rightarrow calculated current @ 243 MV/m: $I_{FN} \sim 10^{22}$ A!

o Activated between $E_{\text{act}} = 130 - 140 \text{ MV/m}, E_{\text{on}} = 80 \text{ MV/m} \rightarrow \rho = 1.75$ \rightarrow calculated current @ 243 MV/m: $I_{FN} \sim 3$ mA

Accidental discharches in the FESM on Cu

Usually discharges are prevented during FESM scans by the PID voltage regulation Nevertheless, some unwanted discharges happen:

- during scans (if the current jump is faster than \sim 2 ms)
- during local measurements (because of activation effects)

- o Discharges (most-likely caused by high-ρ emitters) destroy the surface and lead to the formation of new stable and strong emitters, probably similar to BDs in cavities
- \circ In accelerating structures such a new emitter triggers the next BD, which forms another emitter, that ignite a BD etc.

µ-discharges in the FESM on Si samples

CCD camera images of vacuum gap and glow µ-discharge

SEM images of different emitters before/after

Discharges lead to

- morphological changes (significantly shortened, partially/completely removed emitters)
- create craters;

First results on Ar ion bombardment (local sputtering) of Nb

- o Emitter A was deactivated;
- o Emitters become weaker even at moderate ion energy (max. 2keV);
- o Formation of new emitters?

Conclusions & outlook

o Actual surface quality of DT+SLAC etched Cu not sufficient for CLIC structures

 $N = 229$ & 370 cm⁻² at E = 243 MV/m, mainly caused by particulates

 \circ Cleaning with N₂ (DIC) decreases N significantly by a factor ~1.8-2.8 (7.7-12.3)

 $N = 124$ (29) cm⁻² at E = 243 MV/m, mainly caused by surface defects

- o Geometrical field enhancement not sufficient to explain FE of Cu surfaces
	- Alternative emission processes like the MIV/MIM-model or field-induced protrusion growth
	- Activated emitters with high ρ are candidates for BDs in accelerating structures
- o µ-discharges destroy emitters but often create new emitters/craters
- o Low energy Ar ion bombardment is more reliable way to weaken/remove emitters
- \circ Current and ion conditioning of emitters on Nb will be studied in the next project

Acknowledgements:

Funding by BMBF projects 05H12PX6 (completed) and 05H15PXRB1 (just started)

Thank you for your attention

BERGISCHE UNIVERSITÄT WUPPERTAL

Activation of emitters

- o Insulating oxide layer (IOL, thickness *dox* ~ few nm) on metallic surfaces
- Question: How are emitters activated?

Surface defects (MIV) Surface defects (MIV) Particulates (MIM) Particulates (MIM)

Avoiding particulate contaminations

- o A cleanroom environment (class ISO 3) was installed around the load-lock of the FESM to avoid particulate contaminations during installation of samples
- o Protection cap mechanically fixed until sample reaches cleanroom environment
- o Protection cap loosened under laminar air flow
- \circ Final removement of cap in preparation chamber at p \sim 10⁻⁷ mbar

Consequences of EFE-results for structure conditionning

 \circ E_{peak}/E_{acc} = 2.43

- \circ After 1,800 h ~12,000 BDs in 28 cells \rightarrow ~430 BDs per cell [2]
- o BD rate still too high (factor 10)
- o **Goal: BD rate < 10-7 BD/pulse/m**
- o EFE reduced but still present

- o Actual cleaning: Ultrasonic baths with de-ionized water and clean alcohol
- o Potential improvements due to EFE results:
	- $-$ N₂-cleaning → factor 1.8 2.8 \rightarrow BD rate still too high
	- DIC → factor 7.7 12.3 \rightarrow goal for BD rate achievable
- \circ Conditioning results of a N₂/DIC-cleaned accel. structure still pending

[2] A. Degiovanni et al., WEPME015, Proc. IPAC2014, http://jacow.org/.

Cleaning process

- \circ Cleaning of (grounded) samples with handgun (d \sim 5 cm) typically for 5 min
- \circ Liquid CO₂ (10 bar) and N₂ (8 10 bar, propellant gas)
	- \rightarrow Flat (12x3 mm) or round (\varnothing = 5 10 mm) jet of CO₂ snow particles
- \degree Samples are treated 2.5 min under 90 \degree / 45 \degree and 3 x rotated in 90 \degree steps
- o Teflon protection caps are cleaned as well

