Status of parasitic FE from metallic surfaces and potential destruction of emitters by µ-discharges and ion beam impact

P. Serbun, S. Lagotzky, G. Müller FB C Department of Physics University of Wuppertal

BERGISCHE UNIVERSITÄT WUPPERTAL

5th International Workshop on Mechanisms of Vacuum Arcs, 1-5 September 2015

Outline

- Motivation
- Measurement techniques & samples
- Field emission results before and after cleaning
- Destruction of emitters by µ-dischages
- First results on Ar ion bombardment
- Conclusions and outlook

Motivation

- Field emission (FE) creates "dark current" which absorbs rf energy, causes radiation, is seems to be the precursor of electric breakdown (BD);
- In turn, BD limits the operation of accelerators and can cause irreversible damage to their physical structure;
- The acceleration gradient for the present CLIC design is E_{acc}=100 MV/m (E_{peak}=243 MV/m) and achievable only after long conditioning of the structures [2];
- Deep and quantitative understanding of the origin of BD processes is important;

Goal: suppression of BD by using proper surface treatments.

Task: investigation of FE from flat Cu surfaces

- What causes FE from (relevant) Cu samples?
- How to reduce/avoid FE?

Cu disc of CLIC accel. structure [1]

Surface damage due to breakdown [1]

[1] A.T. Perez & G. Arnau, "*Determination of dislocations density in Cu-OFE for CLIC project by using EBSD*", Poster, MeVArc 2013 [2] W. Wuensch, "Study of the conditioning of RF structures", Presentation, MeVArc 2015.

BMBF project 05H12PX6

5th International Workshop on Mechanisms of Vacuum Arcs, 1-5 September 2015

• Optical Profilometer (OP)

- white light irradiation and spectral reflection (chromatic aberration)
- 20x20 cm² scanning range in 2 cm distance
- Curved surface up to 5 cm height difference
- 2 µm (3 nm) lateral (height) resolution
- Further zooming by AFM:
 - ±2 µm positioning relative to OP results
 - 98x98 µm² scanning range
 - 3 (1) nm lateral (height) resolution
 - contact or non-contact modes.
- $\circ~$ Clean laminar air flow (LAF) from the back
- Granite plate with active damping system
- CCD camera for fast positioning
- o interferometric film thickness sensor (IF)

DC field emission scanning microscope (FESM)

Provides PID-regulated voltage scans V(x,y) @ fixed current (typ. I=1nA): Eact (1nA)

- activation, localization and number density N of emitters
- local U(z) and I(V) measurements of single emitters: $E_{on}(1 \text{ nA})$, β_{FN} , S_{FN}

- base UHV at 10⁻⁷ Pa
- exchangeable W-anodes 3...330 µm
- cathodes up to 25x25 mm²
- 3D drives:
- stepper motor/piezo-translator (100/40 nm/step)
- cathode tilt correction: $\pm 1~\mu m$ within $\pm 5~mm$
- gap monitored via CCD camera (1 µm resolut.)
- heat treatments (< 1200° C)
- auger electron spectroscopy (AES): chemical state
- ion gun: for local emitter cleaning
- ex-situ SEM & EDX: identification of emitting defects
- clean laminar air flow around load-lock

D. Lysenkov, G. Müller, Int. J. of Nanotechnology 2, 2005.

Samples

Fabrication at CERN:

- Flat polycrystalline Cu samples of \emptyset =11 mm
 - Small hole (0.5mm) as mark to identify the emitter position in different systems (SEM/FESM)
- Diamond turned (DT) samples
- Additional chemical etching (SLAC treatment: using H₃PO₄, HNO₃, acetic glacial acid and HCl, to remove a surface layer of 0.6 μm)

Investigation at BUW:

- Transport under Teflon® protection cap to avoid any surface damage and contaminations after polishing and cleaning
- Glued with SEM button on AI holder and mounted to an adapter for the FESM
- FESM adapter \circ Caps opened under HV or clean room (ISO5)
 - Final cleaning (N₂, DIC)
 - **OP+AFM/FESM/SEM+EDX** measurements

Surface quality

Samples measured with optical profilometer (OP) in the area relevant for FESM

- Slightly waved surface ($\lambda \sim 0.5 1 \text{ mm}$)
- Many ridges from DT Ο
- Damage layer? Ο
- Ο

- Sample surface now very flat ($\pm 0.5 \,\mu$ m) Ο
- Many pits (N < 18 mm⁻²) due to etching Ο
- Grain size: 1300 µm² 5.3 mm² Ο
- Average roughness: $R_a/R_a = 126/145$ nm $\circ R_a/R_a = 150/230$ nm slightly increased

FESM/SEM/EDX results

E-map for the sample DT+SLAC #1 before cleaning (1 nA, area 5x5 mm²)

SEM/EDX analysis of Cu surface:

- o 60% particulates (Al, Cl, S, Si, K)
- o 10% surface defects
- 30% emission sites: unknown origin

• EFE is dominated by foreign particulates: cleaning the surface to reduce FE

FE activation statistics without/with N₂ cleaning

for two types of samples

- Emission from surfaces without any cleaning starts at 30 MV/m
- Cleaning with N₂ shows FE starting at 130 MV/m
- N @ E_{peak} = 243 MV/m reduces from 229/372 cm⁻² to 124 cm⁻²
- N increases exponentially [3]:
 N~ exp(1-/E_{act})

[3] S. Lagotzky, G. Müller, submitted to Nucl. Instr. Methods Phys. Res. Sect. A (2015).

5th International Workshop on Mechanisms of Vacuum Arcs, 1-5 September 2015

Dry ice cleaning (DIC) system

- Commercial DIC system (SJ-10, CryoSnow) installed in cleanroom (class iso 5)
- Non-abrasive blasting where dry ice is accelerated in a pressurized air stream and directed at the surface
- Samples/caps cleaned for 2.5 min under 90° /45° and 3 x rotated in 90° steps
- Most particulates (> 100 nm) are removed

www.cryosnow.com

FE activation statistics after DIC cleaning

for three types of samples

- o DIC reduces N significantly
- N @ E_{peak} = 243 MV/m reduces from 124 cm⁻² to 29 cm⁻²
- Chemical etching didn't reduce N

Single emitter characteristics on DIC-cleaned samples

SEM/EDX : 57% surface defects; 12% particulates (AI, Si, W); 31% unidentified;

- Rather stable FE
- Slight jumps probably due to melting of micro-tips

- More unstable FE
- Changed slope at high fields due to bad electrical contact to bulk

- \circ Highest β_{FN} are caused by particulates
- $\circ \quad \text{Most } S_{\text{FN}} \text{ and } \beta_{\text{FN}} \text{ are in a reasonable} \\ \text{range for all types of emitters} \\$
- $\,\circ\,$ Most data are correlated: S_{FN} ~ β_{FN} ^-2
- No correlation at low β_{FN}: high S_{FN} values with respect to the anode size hint at other FE mechanisms like MIV-and MIM-emission [4]

[4] R. V. Latham, High voltage vacuum insulation, Academic Press, London (1995).

Possible origin of breakdowns in FR structures

- All emitters yielded a reduced E_{on}< E_{act} hence, emitters can lead to strong e⁻ loading of accelerating structures if activated
- Activation strength described by field reduction function $\rho = E_{act}/E_{on}$
- \circ 20% of emitters show ρ > 3 (surface defects)
- High-p emitters would cause an emitter explosion and a BD of the cavity field

Examples: two candidates for breakdowns

○ Activated between E_{act} = 240-250 MV/m, E_{on} = 54 MV/m → ρ = 4.62 → calculated current @ 243 MV/m: I_{FN} ~ 10²² A!

Activated between E_{act} = 130-140 MV/m, E_{on} = 80 MV/m → ρ = 1.75
 → calculated current @ 243 MV/m: I_{FN} ~ 3 mA

Accidental discharches in the FESM on Cu

Usually discharges are prevented during FESM scans by the PID voltage regulation Nevertheless, some unwanted discharges happen:

- during scans (if the current jump is faster than ~2 ms)
- during local measurements (because of activation effects)

- Discharges (most-likely caused by high-p emitters) destroy the surface and lead to the formation of new stable and strong emitters, probably similar to BDs in cavities
- In accelerating structures such a new emitter triggers the next BD, which forms another emitter, that ignite a BD etc.

µ-discharges in the FESM on Si samples

CCD camera images of vacuum gap and glow µ-discharge

SEM images of different emitters before/after

Discharges lead to

- morphological changes (significantly shortened, partially/completely removed emitters)
- create craters;

First results on Ar ion bombardment (local sputtering) of Nb

- Emitter A was deactivated;
- Emitters become weaker even at moderate ion energy (max. 2keV);
- Formation of new emitters?

Emitter No.	initial	Sputter 1 E _{ion} = 1keV, t=1h	Sputter 2 E _{ion} = 1keV, t=1h	Sputter 3 E _{ion} = 2keV, t=1h
	β_{FN}	$\beta_{\sf FN}$	β_{FN}	β_{FN}
А	not meas.	gone	-	-
В	100	100	57	69
1	114	85	85	85
2	58	58	47	32

Conclusions & outlook

• Actual surface quality of DT+SLAC etched Cu not sufficient for CLIC structures

- N = 229 & 370 cm⁻² at E = 243 MV/m, mainly caused by particulates

 \circ Cleaning with N₂ (DIC) decreases N significantly by a factor ~1.8-2.8 (7.7-12.3)

- N = 124 (29) cm⁻² at E = 243 MV/m, mainly caused by surface defects

- o Geometrical field enhancement not sufficient to explain FE of Cu surfaces
 - Alternative emission processes like the MIV/MIM-model or field-induced protrusion growth
 - Activated emitters with high ρ are candidates for BDs in accelerating structures
- o µ-discharges destroy emitters but often create new emitters/craters
- Low energy Ar ion bombardment is more reliable way to weaken/remove emitters
- o <u>Current</u> and <u>ion conditioning</u> of emitters on Nb will be studied in the next project

Acknowledgements:

Funding by BMBF projects 05H12PX6 (completed) and 05H15PXRB1 (just started)

Thank you for your attention

BERGISCHE UNIVERSITÄT WUPPERTAL

5th International Workshop on Mechanisms of Vacuum Arcs, 1-5 September 2015

Activation of emitters

- Insulating oxide layer (IOL, thickness $d_{ox} \sim$ few nm) on metallic surfaces
- o <u>Question</u>: How are emitters activated?

Avoiding particulate contaminations

- A cleanroom environment (class ISO 3) was installed around the load-lock of the FESM to avoid particulate contaminations during installation of samples
- Protection cap mechanically fixed until sample reaches cleanroom environment
- Protection cap loosened under laminar air flow
- Final removement of cap in preparation chamber at $p \sim 10^{-7}$ mbar

Consequences of EFE-results for structure conditionning

 \circ E_{peak}/E_{acc} = 2.43

- After 1,800 h ~12,000 BDs in 28 cells → ~430 BDs per cell [2]
- BD rate still too high (factor 10)
- Goal: BD rate < 10⁻⁷ BD/pulse/m
- EFE reduced but still present

- o Actual cleaning: Ultrasonic baths with de-ionized water and clean alcohol
- Potential improvements due to EFE results:
 - N₂-cleaning → factor $1.8 2.8 \rightarrow BD$ rate still too high
 - DIC \rightarrow factor 7.7 12.3 \rightarrow goal for BD rate achievable
- \circ Conditioning results of a N₂/DIC-cleaned accel. structure still pending
- [2] A. Degiovanni et al., WEPME015, Proc. IPAC2014, http://jacow.org/.

Cleaning process

- Cleaning of (grounded) samples with handgun (d ~ 5 cm) typically for 5 min
- Liquid CO₂ (10 bar) and N₂ (8 10 bar, propellant gas) \rightarrow Flat (12x3 mm) or round (Ø = 5 - 10 mm) jet of CO₂ snow particles
- \circ Samples are treated 2.5 min under 90° / 45° and 3 x rotated in 90° steps
- Teflon protection caps are cleaned as well

