Stochastic modeling of breakdown through dislocations motion

Amit Weiss, Yinon Ashkenazy Racah Institute of Physics, Hebrew University, Jerusalem, Israel

Invaluable help from:

Walter Wuensch, Sergio Calatroni, Tomoko Muranaka, Iaroslava profatilova, Vahur Zadin, Robin Rajamaki

Dislocation mediated – self organized criticality

Plasticity of Micrometer-Scale Single Crystals in Compression

Michael D. Uchic,¹ Paul A. Shade,² and Dennis M. Dimiduk¹

Dislocation mediated intermittent flow - size effects, hardening.

Dislocation density inside a plane as a controlling parameter.

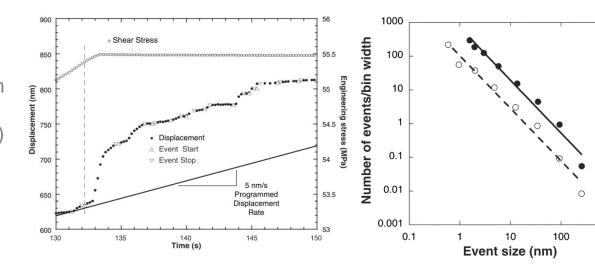
1000

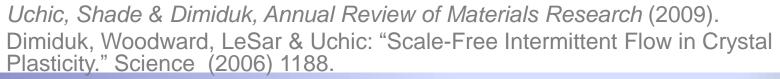
Intermittency characterized by a universal Power law burst PDF Acoustic emissions: Similar + space and time coupling between events

Single crystal micro-pillar compression:

(Weiss & Marsan, Science 2003)

Earthquakes show similar PDF and spatio-temporal correlation (Kagan, Geopgysical J. (2007)



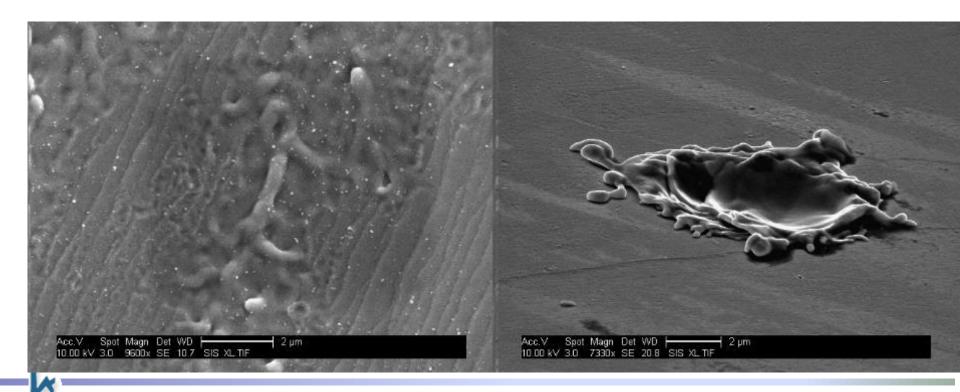


Microscopy of surface

No observable features using SEM

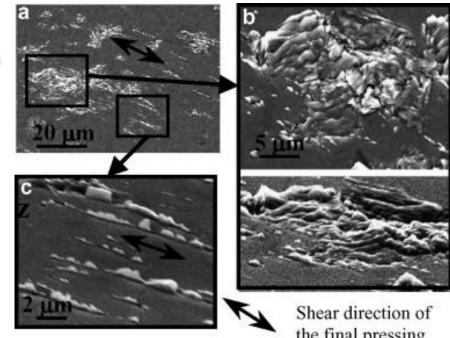
RF post mortem – complex deposition structures ... otherwise - Flat surface.

DC post mortem – aside of splashed copper ... Flat surface.



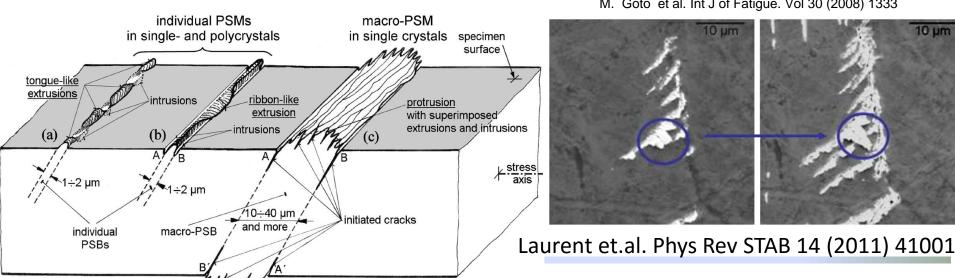
PSB -> protrusions

- Previously observed in fatigued surfaces.
- Significant sub-surface PSB leading to these surface features.



the final pressing Fatigue strength and formation behavior of surface damage in ultrafine grained copper with different non-equilibrium microstructures

M. Goto et al. Int J of Fatigue. Vol 30 (2008) 1333

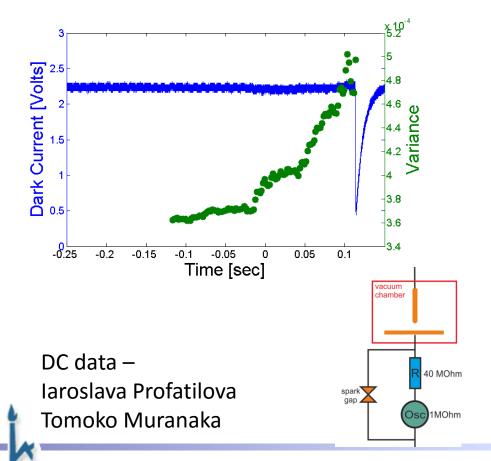


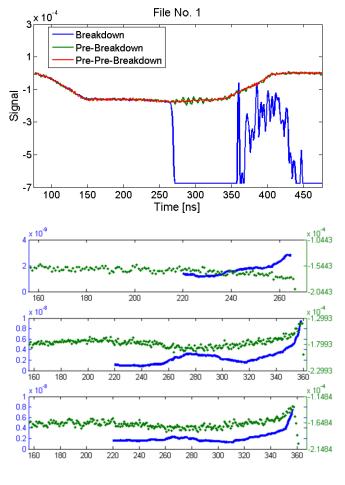
J.Man et al, Phil Mag 89 (2009) 1295

Observations until now...

DC and RF indications of pre-breakdown increase in

dark current variance





RF data - Alberto Degiovanni

What are we looking for?

- Suggest a model which will reproduce critical protrusion formation due to plastic response in the substrate?
- Criticality due to interaction between dislocations and field emitter.

Consistency with observable characteristics:

- Protrusions dynamics must allow for them to disappear:
 - No strong memory effect.
 - No observable PSB or PSM
- BD rates of similar order of magnitude as observed
- BD rate field dependency: BDR $\propto E^{30}t^5$

Hope to achieve:

Critical experimental scenarios,
predictions of observable features (microscopy)
Possible outcomes - conditioning schemes, surface modifications,
understand statistics...

Od mean field mobile dislocations model

Mean field - Single slip plane.

Define the "in-plane" mobile dislocations density (1/nm).

Protrusions forming on surface due to dislocations arriving to surface

Elastic interaction between dislocations

Field enhancement due to protrusion leads to increase in localized stress

Simulating up to creation of a runaway process which will lead to eventual tip evaporation

Not yet in...

Surface evolution - leads to hardening due to cellular structure interaction between sites

General gain-loss type Markovian processes

Rates for transition between states

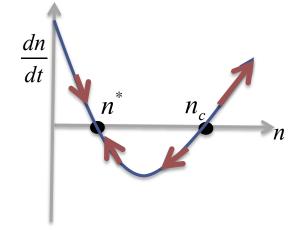
$$n \xrightarrow{\rho_n^+} n+1 \qquad \text{n-1 n n+1}$$

$$n \xrightarrow{\rho_n^-} n-1$$

The master equation

$$\dot{P}_{n} = \Gamma_{n-1}^{+} P_{n-1} + \Gamma_{n+1}^{-} P_{n+1} - \left(\Gamma_{n}^{+} + \Gamma_{n}^{-} \right) P_{n}$$

can lead to bifurcation: a metastable state and a critical one.



We look for the quasi-stationary probability distribution function And the probability to cross the critical point (reach extinction)

Approximate solution based on WKB theory with 1/N being the small parameter. $\dot{P} = 0 \quad \triangleright \quad P(n) \circ P(rN) \sim e^{-N[S(r) + O(1/N)]}$

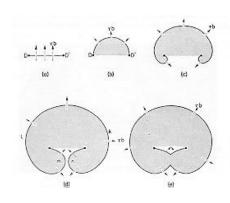
Moving dislocations population

- Classical multiplication through frankreed sources
- Multiplication rate:



oActivation requires overcoming local obstacles -

Final term includes a dimensionless Kinetic factor



$$\frac{d\rho^+}{dt} = \alpha \frac{\rho + c}{t_{\text{create}}} P_f$$

$$\sigma = \frac{2Gb}{L}$$

$$\left(c_{v(T)} + \rho + c\right)e^{\frac{\Omega\sigma}{k_BT}}$$

$$\frac{d\rho^{+}}{dt} = \frac{\kappa v}{2Gb} \left(\rho + c\right)^{2} \sigma e^{\frac{\Omega \sigma}{k_{B}T}}$$

Moving dislocations population

Depletion rate

- oCollisions with obstacles
- oCollisions with other moving dislocations
- o Ejection to surface
- Add an interaction factor (not all dislocations are removed due to thee interactions)

$$\frac{d\rho^{-}}{dt} = \rho cv + \rho^{2}v + \delta \frac{\rho}{t_{\text{life}}}$$

$$\frac{d\rho^{-}}{dt} = \xi v \left(\rho + c + \frac{\delta}{D} \right) \rho$$

State variables:

- Velocity proportional to stress
- ○Stress –
 Maxwell + stress due to elastic interaction between dislocations
- oField enhancement

$$v = 50C_t \frac{\sigma}{G}$$

$$\sigma = B \frac{1}{2} \varepsilon_0 E^2 + ZGb\rho$$

$$E = \frac{V}{d} (\beta + 3.5)$$

Protrusions and field interaction

Using number of new steps

$$N = \int \dot{N} dt = \int v C \rho dt$$

Define local change in aspect ratio

$$\frac{d\beta^+}{dt} = 2N\dot{N} = 2\sqrt{\beta}vC\rho$$

Decay through surface diffusion

$$\frac{d\beta^{-}}{dt} = \eta B_d \beta \qquad B_d = \frac{D_{s0} e^{-\frac{Q}{k_B T_{tip}}} \gamma \Omega^2 \nu}{k_B T_{tip} l^4}$$

Beta used to enhance local field and control FN current

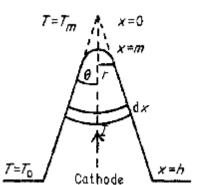
Temperature effect on dynamics of protrusions

Stresses:

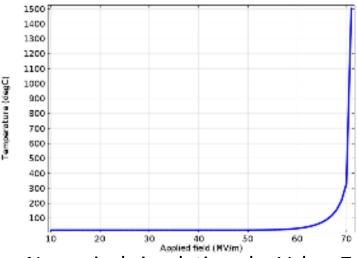
oHeat conduction leads to negligible temperature change at the base of the protrusion and therefor negligible thermal stresses.

Surface relaxation

- oTemperature estimated at the tip close to BD is very high (> 1000K)
- oactivation energy for surface relaxation is very low 0.03eV, Therefor diffusion is fast and changes are up to factor of 2 once a tip is formed.



Analytic calculations by Sergio calatroni



Numerical simulations by Vahur Zadin

Linear Stability Analysis for estimating fast

dynamics reduced form

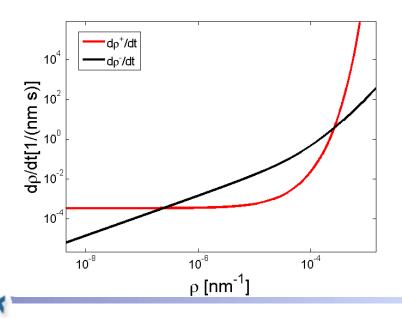
Linearization of the full model:

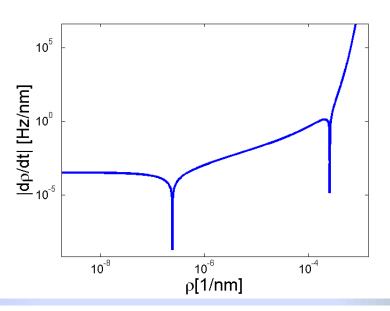
$$\begin{pmatrix} \dot{\Delta\rho} \\ \dot{\Delta\beta} \end{pmatrix} = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \begin{pmatrix} \Delta\rho \\ \Delta\beta \end{pmatrix}$$

- The eigenvalues and eigenvectors indicates the change rate's and the dynamic dependences before variables.
- For the basic of igenve of to $f S^b \rho_*$ each valuable dynamics is independent $e^{\frac{50\xi C_t}{G^2b}} e^{\frac{4\Omega\sigma_*}{k_BT}} B\varepsilon_0 E_0^2 (\rho_* + c)^2 (\beta_* + \left(\frac{\dot{\Delta}\rho}{\dot{\Delta}\beta}\right) = \begin{pmatrix} \lambda_\rho \Delta\rho \\ \lambda_\beta \Delta\beta \end{pmatrix} \Longrightarrow \begin{pmatrix} \Delta\rho \\ \Delta\beta \end{pmatrix} \propto \begin{pmatrix} e^{\lambda_\rho t} \\ e^{\lambda_\beta t} \end{pmatrix}$ $A_{2,1} = \frac{100C_t C}{G} \sqrt{\beta_*} (\sigma_* + ZGb\rho_*)$
- For $\underline{strongodiffusion}$ we get this esituation and beta rates are significantly smaller than rho.

Reduced – single dynamics model

- Strong surface relaxation lead to surface protrusions following instantaneously the dislocation population.
 - Protrusion height is now given by $\beta = E_s \rho^2$
- The model is characterized by two points:
 - o Metastable
 - o a critical point



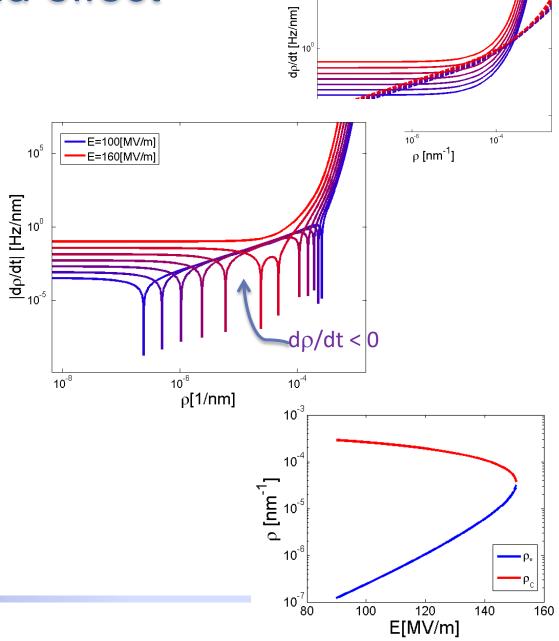


Applied field effect

Low fields:

Mobile dislocation density remains at Metastable region. Dynamic barrier decreases with increasing fields.

Up to a critical stress – bifurcation to two solutions. Above it - no meta-stable state solution.



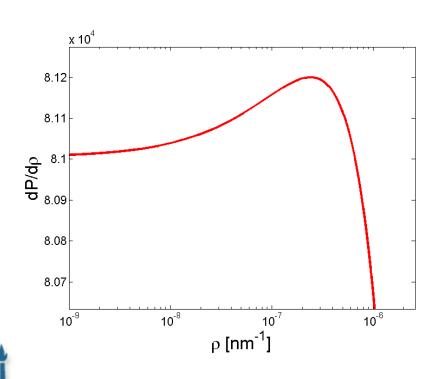
E=100[MV/m]

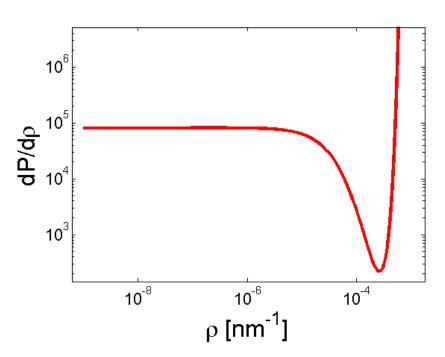
=E=160[MV/m] =do⁻/dt

PDF of dislocation population

The single parameter model can be solved analytically to give the Probability density function of the dislocation density

This indeed shows a low metastable solution and a probability barrier formation





Parametrization

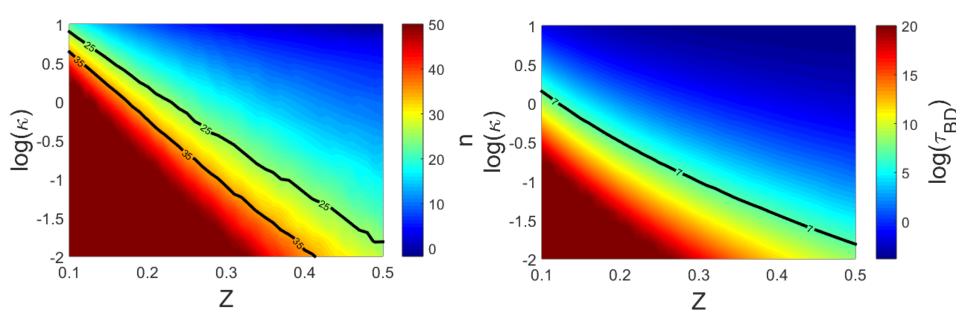
- The model contains various competing mechanisms which can not be readily estimated.
- We scan the parameter space to see if a combination of such parameters does allow for observable behavior
- If such a region in parameter space does exist we can then check whether such a combination is indeed physically viable.
- Two main observables are used for that
- Experimental BD rates: 10⁻⁷ [bpp/m]
 - Estimating the number of active regions per m:

$$N\left(\frac{1}{m}\right) = \frac{\binom{N_{iris}}{m} \cdot \binom{S_{iris}}{m}}{dR_{active\ regions}^2} \approx \frac{100 \cdot 2\pi \cdot 2.35(mm) \cdot 1(mm)}{(10^{-2}mm)^2} = 10^7$$

Since the pulses are of 230 nsec we get:
$$\tau(BD)_{per\ area\ unit} = dt_p/(P(bpp/m)/N) = \frac{230nsec}{\frac{10^{-7}}{10^{7}}} \approx 10^{7} (\frac{sec}{zone})$$

Field dependency of the breakdown rate (estimated as E^{30}). So we define the localized (10%) exponent : $n = \log_{1.1}(\frac{\tau(E)}{\tau(1.1 \cdot E)}) \approx 30$

Parameter space –analytic model



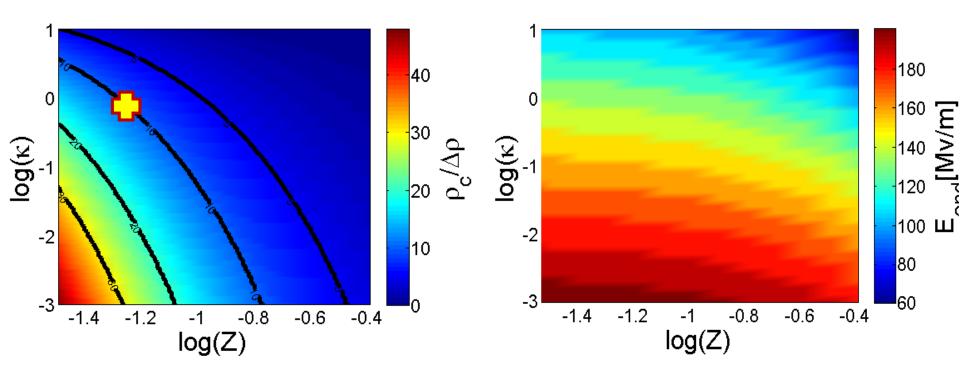
Observable values:

$$au_{bd} pprox 10^7 sec$$
 , $n = ln(\frac{ au(E)}{ au(rE)})/ln(r) pprox 30$

• Significant coincidence region:

Parameter space – kmc simulations

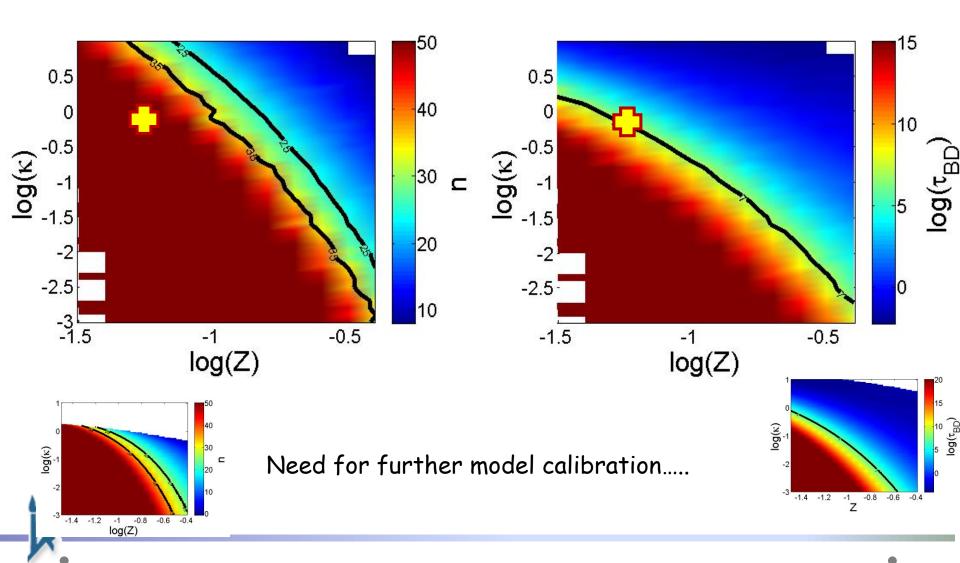
· full model validity range - using kmc

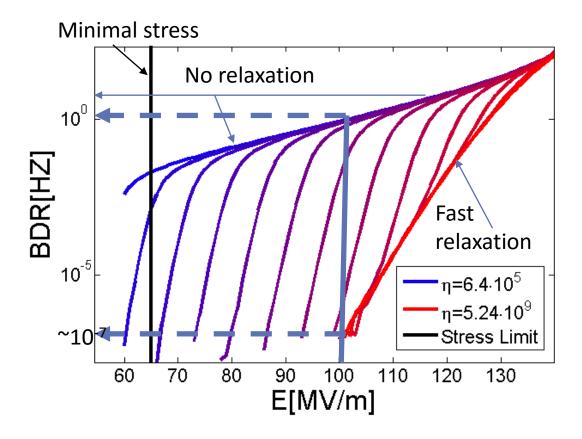


<u>Arbitrarily</u> choose example working point:
maximal field
kmc accessible

Parameter space – kmc simulations

· full model validity range - using kmc





Relaxation kinetics (surface diffusion) defines two limits:

- a. Fast-surface topography follows mobile dislocations content.
- b. Slow-surface builds up even at metastable state of mobile dislocations.

Evolution trajectories

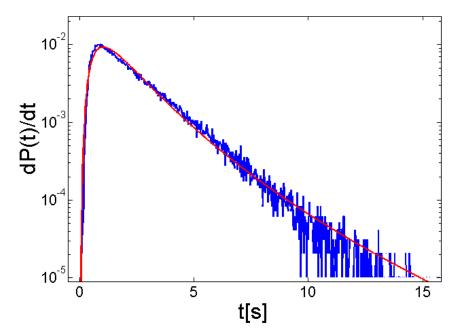
 Dynamics of surface protrusions shows relation between surface protrusions and mobile dislocations.



Implication to BD time distributions

The interaction between
Surface protrusion evolution
And mobile dislocation content
Leads to a non-Poissonian distribution

This implies a strong dependence Of BD rate on pulse length.



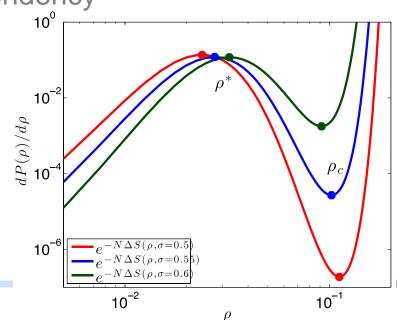
Histogram of time to BD shows a log normal behavior for κ =0.05, Z=0.6.

$$f_X(x;\mu,\sigma) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right)$$
$$\sigma = 0.7[\log(s)], \ \mu = 0.5[\log(s)]$$

Signs of criticality

- Adiabatically moving between quasistationary PDF: Change in pdf moments with field
 -> identify threshold
- At specific conditions, probe time dependencies of the QS pdf: Identify large fluctuations time dependency
 - -> identify time constants
 - -> mechanism

$$P_{c}(S, \Gamma, t) = \mathring{0}_{0}^{t} P(S, \Gamma > \Gamma, t) dt$$



PRE-BD signals

- As the system approaches the critical point.
 Fluctuation diverge.
- Observable through standard deviation of the time correlation

$$SD(t) = \frac{\int_{t-D}^{t+D} (I(t) - \langle I \rangle)^2 dt}{(\langle I \rangle)^2}$$
generally,

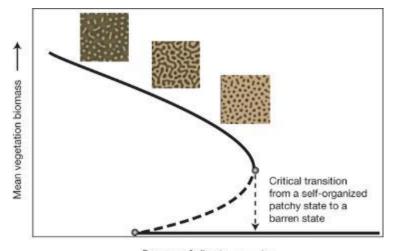
• Or, more generally, autocorrelation in the signal $\hat{0}_{0}^{t-k}(I(t)-\langle I \rangle)(I(t+k)-\langle I \rangle)$

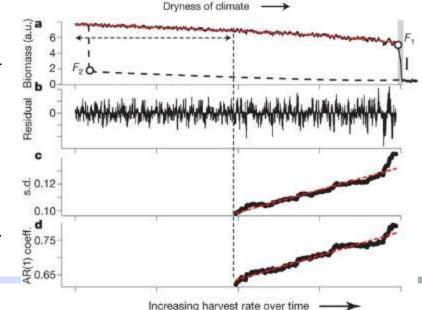
signal
$$R(k) = \frac{\dot{0}_{0}^{t-k} (I(t) - \langle I \rangle) (I(t+k) - \langle I \rangle) dt}{\dot{0}_{0}^{t-k} (I(t) - \langle I \rangle)^{2} dt}$$

REVIEWS

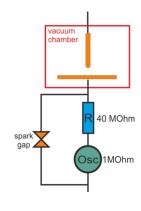
Early-warning signals for critical transitions

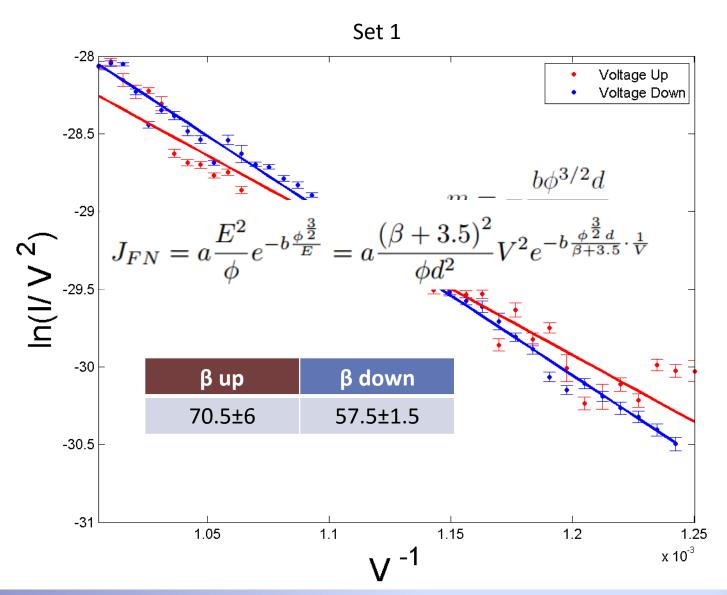
Marten Scheffer¹, Jordi Bascompte², William A. Brock³, Victor Brovkin⁵, Stephen R. Carpenter⁴, Vasilis Dakos¹, Hermann Held⁶, Egbert H. van Nes¹, Max Rietkerk⁷ & George Sugihara⁸





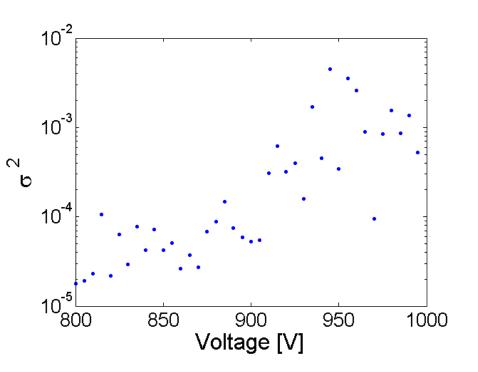
DC measurements

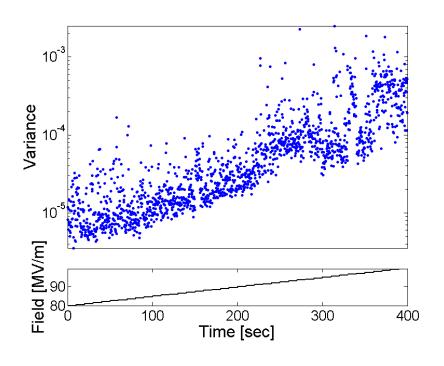




Field dependent fluctuations

- Monitoring FN allows direct access to the protrusion population, and therefor show pre BD increase.
- Time scale of fluctuations indicative to the dynamic timescale.





Summary

- BD due to critical plastic process.
 - o demonstrate critical behavior, bifurcation order of magnitude effect.
 - Analytically (or at least numerically) solvable
 - o reproduce observed BDR exponent
- Unique experimental scenarios:
 - o PDF pre breakdown analysis: using PDF (fluctuations) and PDF tail (rare events).
- Future directions
 - Better dark current measurements.
 - Full fit of the model.
 - Predict acoustic signal.
- Possible Implications conditioning through surface hardening (enriching forest dislocations), effect of surface and microstructure.
- Possible observations Cellular structure observable via TEM? SEM? Acoustic signal?
- Fitted values (kinetic factors etc) should be compared to microscopic models.

