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Layout of the 
presentation

• What we simulate ….

• Brief overview of used models in FEM simulations

– The emission currents and material heating

– Mechanical stresses

• Multi scaling in FEM simulations 

– Atomistic surface reconstruction for continuum 
simulations

• First insights into mechanical stresses in kMC 
nanostructures
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• High aspect ratio tips
• Field emitters

Dislocations and plastic 
deformation as source 

of emitters

• Surface stress due to 
high electric field

• Emission currents

Subsurface voids, 
precipitates as stress 

concentrators

FEM simulations of field emitters

Bulk simulations:
Multiscaling, coupling to 

other methods
kMC, MD, FEM

Strongest/weakest 
nanostructure estimation

Material Surface 
Simulations:
Field emitters

Surface reconstruction

Electric field over 
surface:

Emission currents
Surface stress

Comparison of simulation 
and experiment:

Emission current 
measurements
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Simulated systems

• Coupled electric, mechanical, thermal interactions
– Electric field deforms sample and  causes emission currents
– Emission currents lead to current density distribution in the 

sample
– Material heating due to the electric currents
– Electric and thermal conductivity temperature and size 

dependent
– (Deformed) sample causes local field enhancement

h d

• Dc El. field ramped up to 14 000 MV/m
• Comsol Multiphysics 4.4 (and 5)

— Nonlinear Structural Materials Module
— AC/DC module

• HELMOD (Combined Electrodynamics, Molecular 
dynamics)

• LAMMPS
• Kimocs (by Ville Jansson)

• Simulated materials: Copper
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The emission currents  

• Thermionic emission: high 
temperature, low field

• Field emission: low temperature, 
high field

• Combined effects : general 
thermal field equation:

General Thermal Field model - Simulations of emission currents over large surfaces

Special interest:
Intermediate region where thermal 

contribution can be significant

V. Zadin, University of Tartu K. L. Jensen, J. Appl. Phys. (2007)



Heating and emission currents

• Heat equation in steady state
• Fully coupled currents and temperature
• Emission currents concentrated to the 

top of the tip
• Nottingham effect included in thermal 

modelling

Local emission currents – connection to the experiment

Emission 
current density

• Size dependence of electric and thermal 
conductivity

• Conductivity in nanoscale emitters is 
significantly decreased (more than 10x for 
sub-nanometer tip)

• Knudsen number to characterizes nanoscale 
size effects

• Wiedemann-Franz law for thermal 
conductivity

• Optionally, temperature dependence in 
finite size effects
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Field emitters as nanowires
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Elastoplastic deformation 
simulations

• Elastoplastic deformation of material, simulation of 
large strains

• Validation of material model and parameters by 
conducting tensile stress simulations

• Accurate duplication of the experimental results 
(tensile and nanoindentation test)

• Parameters from tensile test are macroscopic, single 
crystal parameters are needed due to large grains in 
soft copper

• Incorporation of surface effects to anisotropic elastic 
material model in progress

[1] Y. Liu, et al. ,J. Mech. Phys. Solids, 53 (2005) 2718
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• Anisotropic material model

• Crystal plane dependent surface 
properties

• The surface effects important 
below ~ 6-10 nm
– Corrections for surface stress (surface 

tension)

– Model complexity improved towards 
nonlocal simulations

– Strongest/weakest nanostructure 
estimation

• Plastic deformation
– Accurate limits to be determined

– Dependence from grain size, average 
dislocation length and plastic 
deformation activation volume

– More complex model needed to 
account microstructure effects, 
dislocation densities etc.

Surface stress effects in 
nanoscale modelling
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Surface reconstruction 
based on kMC simulations

Methodology is not limited to KMC 
Future MD or experimental surface 
reconstruction is possible

• Surface reconstruction 
from KMC simulations
– Material stress calculations

– Temperature and emission 
currents estimation

• Delaunay triangulation
– No atoms in the circumcircle 

of a tetrahedra
• Coarse mesh – maximum edge 

length is lattice_constant

• Refined mesh – maximum 
edge length is 
lattice_constant/2

• Influence of sharp corners is 
controlled using Laplacian 
smoothing of refined mesh
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El. field and stress distributions
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Points of interest:
•

•

•

Applied field
300 MV/m

• Included physics:
• Electric field and electrostatic stress

• Material stress (surface stress not yet 
included)

• Emission currents (GTF) and 
temperature

• One way coupling – Kimocs to FEM

From FEM simulations:
• Interpolation in atom locations:

• Mechanical stress
• Current density
• Material temperature
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Simulation outputs

• Robust surface detection – all 
geometries and surfaces can be 
handled

• All our existing FEM models can be 
used 

The Good: The Bad:
• Influence of adatoms needs better 

handling
• Emission currents from ultra small 

areas – single atom can emitter most 
of the current

• Speed optimization needed!

Electric field (MV/m)Current density (A/m^2)Temperature (degC)Von Mises stress (MPa) 

V. Zadin, University of Tartu                                                                                                MeVArc 2015



Stress in field emitters

• Reasonable behavior of stress 
assigned to atoms
• The link between methods 

working
• Nonuniform and complex stress 

distribution
• Can lead to additional 

deformation of the sample

Further points of interest:
• The effect of mechanical stress
• The influence of dynamic 

geometry to the emission 
currents and field enhancement

• Thermal stability of the emitter
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El. field and stress evolution
• For 1000 kMC steps 1 FEM 

simulation

• TkMC=1000 K (~0.74 Tmelt)

• Applied electric fields

– Eh5=700 MV/m 

– Eh10=500 MV/m 

– Eh15=500 MV/m 

• Influence to the emission 
currents and temperature 
difficult to follow

• Geometrical effects can be 
significant

– Effects to stress distribution

– Low aspect ratio emitters can 
develop strong field 
enhancement properties

Bold lines – moving average
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Emission current 
distribution mapping

• El. field is not included in kMC 
simulation

• Edges of the protrusion have 
significant field enhancement

• Possibilities for further 
enhancement due to Schottky
conjecture

• Single atom can have significant 
influence over the emission currents

• Additional homogenization is 
needed to reduce the effect

• Points of interest:

• Evaporation mechanism in kMC

• Possible conditioning effect due to 
evaporation of sharp corners?
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Model for emission currents needs updating 
to include curvature effects
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• We can see different 
surface modifications 
leading to small β
– Large β is needed 

• Multiplication of field 
enhancement factors
– Can explain observed high 

beta values

• Incorporates surface 
roughness 

• r_1/r_2<0.1 is needed to 
observe significant 
influence 

r_2

r_1

Sensitivity to surface 
perturbation – influence of 

adatoms

Max. enhancement Reference sim.
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Conclusions

• FEM is viable and flexible tool for studying 
surface modification phenomena

• Important to improve the accuracy of 
emission current modeling

– Curvature effects must be included

• Future simulations of possible conditioning 
mechanisms – evaporation of “hot” atoms
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Thank you for your attention!

V. Zadin, University of Tartu


