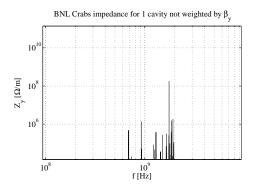
Introduction Coupled bunch spectrum Effect of an HOM impedance Conclusions and plans

Impact of transverse HOM on beam stability in the HL-LHC

N.Biancacci, K.Li, E.Métral and B.Salvant

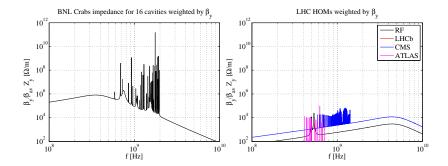
HL-LHC WP 2.4 Meeting 10-12-2014 Introduction Coupled bunch spectrum Effect of an HOM impedance Conclusions and plans

Outline



N.Biancacci

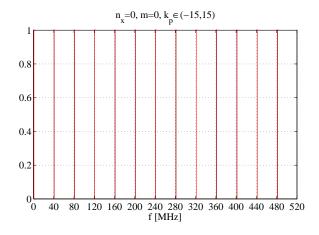
- Crab cavities exhibit HOMs from ≈ 500 MHz up to 2 GHz in a location where the transverse β is ≈ 3000 .
- Some HOM reach the level of $R_s = 10 \text{ G}\Omega/\text{m} \rightarrow \text{it might drive transverse CB instabilities!}$


Example for BNL cavities:

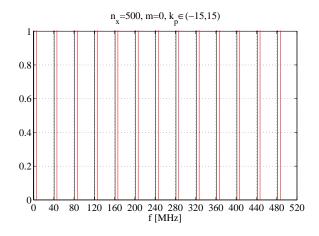
f (GHz)	Q	R (Ohm/m) per half cavity	plane	Deltaf in kHz
0.400	6.66E+0 9	5.98E+12	v	-
0.685	1880	4.67E+05	н	365
0.927	8600	1.38E+06	н	108
1.30	6540	3.73E+05	V	200
1.50	10800	2.67E+05	н	140
1.66	24200	3.14E+05	н	69
1.75	5800	2.57E+05	н	301
1.75	4160000	1.81E+08	н	0.4
1.84	9990	3.34E+05	V	185
1.86	26400	4.17E+05	н	70
1.86	88200	1.56E+06	V	21
1.92	102000	1.85E+06	н	18
1.96	54400	1.15E+05	н	36

Introduction Coupled bunch spectrum Effect of an HOM impedance Conclusions and plans

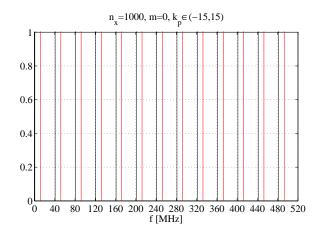
• Comparison of HLLHC (round $\beta^* = 15$ cm) BNL-HOMs Vs main HOMs from nominal LHC ($\beta^* = 60$ cm).

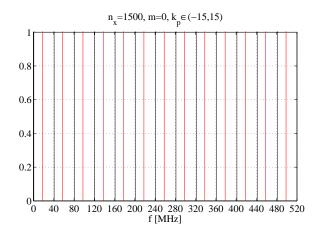

Introduction Coupled bunch spectrum Effect of an HOM impedance Conclusions and plans

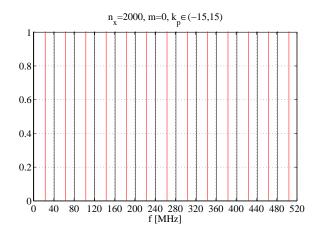
- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$ varying Q = 1000 and resonance frequency $f_r = 800 \text{ MHz}$.
- How this applies to the HL-LHC? And what are the limits in terms of impedance?

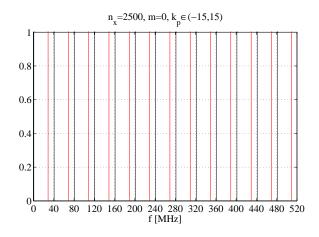

scenario	HL-LHC 25 ns		
Energy	Е	7 TeV	
# bunch particles	N_b	2.2 10 ¹¹ ppb	
Bunch number	М	3564	
Bunch length	σ_z^{rms}	7.55 cm	
Main RF voltage	v	16 MV	
Transverse Emittance	$\varepsilon_{x,y}^{norm.rms.}$	$2.5000 \mu{ m m}$	
Average β_{y}	$\bar{\beta}_{y}$	71.5255 m	
Average β_y	$\bar{\beta}_x$	65.9756 m	
Hor. Tune	Q_{x_0}	62.31	
Ver. Tune	Q_{y_0}	60.32	
Sync. Tune	Q_s	0.002	
Revolution frequency	f_0	11.245 kHz	
Sync. frequency	f_s	22.994 Hz	
Chromaticity	$\xi_{x,y}$	0	

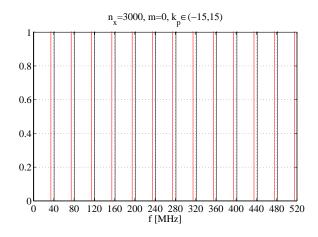
Main machine and beam parameters used for the stability estimations

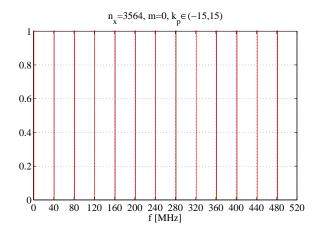




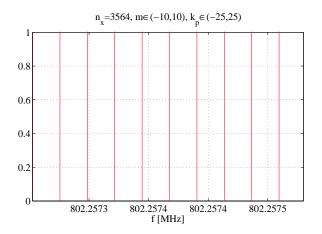


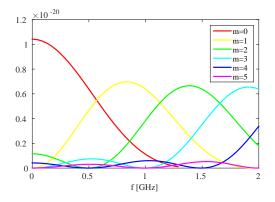





Varying n_x : Lines spaced by $Mf_0 \simeq 40$ MHz and shifted by $Q_{y_0}f_0$.

N.Biancacci





Varying m: around each CB line there is a cluster of lines spaced by $f_s \simeq 22$ Hz ($Q_s=0.002$). Each azimuthal mode impacts differently: \rightarrow Sacherer's sinusoidal modes

N.Biancacci

- CB lines at: $f_p = (n_x + k_p M + mQ_s + Q_{y_0})f_0$ with $n_x \in (0..M 1)$ coupled bunch number, m = 0, 1, 2, ... azimuthal bunch number, k_p line number.
- Lines amplitude for each azimuthal mode is given by the Sacherer sinusoidal modes.

- Each CB line can be driven unstable in presence of an impedance.
- The rise-time and frequency shift can be approximately calculated by means of the Sacherer formula:

$$\Delta \omega_m^{x,y} = \frac{1}{|m|+1} \frac{jq\beta I_b}{2m_0\gamma Q_{x_0,y_0}\Omega_0 L_b} \left(Z_{x,y}^{eff} \right)_m$$

where $\Delta \omega_{n_x}^{x,y}$ the CB line complex frequency shift, q is the proton charge, m_0 the proton rest mass, $I_b = e N_b/T_0$ the beam current, T_0 the revolution frequency, ω_0 revolution radial frequency, Q_{x_0,y_0} the machine unperturbed tune, β and γ relativistic factors, $L_b = 4\sigma_z$ with σ_z the rms bunch length, Z_{xy}^{eff} the impedance weighted by the sinusoidal modes with

$$h(\omega) = \frac{8\tau_b^2}{\pi^4} \left(|m| + 1\right)^2 \frac{1 + (-1)^{|m|} \cos(\omega \, 4\tau_b)}{\left[(\omega \, 4\tau_b/\pi)^2 - (|m| + 1)^2\right]^2}$$

and

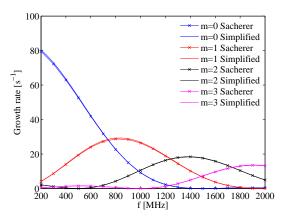
$$Z^{eff}_{x,y} = \frac{\sum_{p=-\infty}^{+\infty} Z(\omega_p)_{x,y} h(\omega_p)}{\sum_{p=-\infty}^{+\infty} h(\omega_p)}$$

• The chromatic frequency $\omega_{\xi} = \frac{\omega\xi}{\eta}$ shifts the sinusoidal modes (replace $\omega \to \omega - \omega_{\xi}$).

• NB: No damper is considered here.

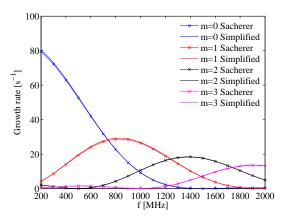
- Introduction Coupled bunch spectrum Effect of an HOM impedance Conclusions and plans
- A transverse HOM can be characterized by shut impedance R_s , merit factor Q and resonant frequency f_r :

$$Z(f) = \frac{f_r}{f} \frac{R_s}{1 - j \, Q\left(\frac{f_r}{f} - \frac{f}{f_r}\right)};$$

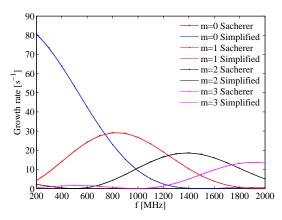

- If the bandwidth $\Delta f = \frac{f_r}{Q} \ge f_0$, the mode covers one or more CB lines that are driven unstable.
- If the bandwidth $\Delta f = \frac{f_r}{Q} \ll f_0$, the mode can fall between the CB lines \rightarrow complicated situation due to the many azimuthal modes spaced by f_s .
 - If falling on the CB line we can simplify the Sacherer formula

$$\Delta \omega_m^{x,y} = \frac{1}{|m|+1} \frac{jq\beta I_b}{2 \, m_0 \gamma Q_{x_0,y_0} \Omega_0 L_b} R_s \frac{h(\omega_r)}{\sum_{p=-\infty}^{+\infty} h(\omega_p)}$$

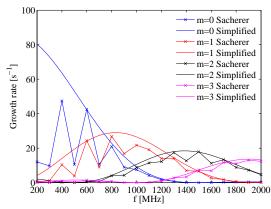
• If not falling on the CB line we are in principle stable.


- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$, $Q = 10^3$ and variable resonance frequency f_r .
- Study of growth rate Vs frequency when $f_r \simeq f_p$ (on top of CB line):

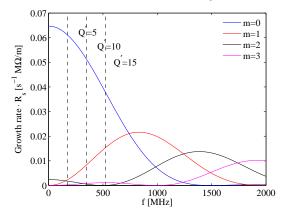
• Good agreement between Sacherer and the simplified formula.


- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$, $Q = 10^3$ and variable resonance frequency f_r .
- Study of growth rate Vs frequency when $f_r \simeq f_p$ (not on top of CB line):

• Same curves since shortest $\Delta f = 200 \text{MHz}/1000 = 200 \text{kHz} > f_0$.

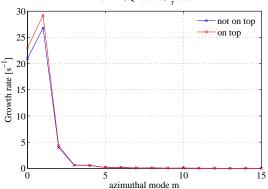

- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$, $Q = 10^5$ and variable resonance frequency f_r .
- Study of growth rate Vs frequency when $f_r \simeq f_p$ (on top of CB line):

• Same curves as
$$Q = 10^3$$
 as expected.


- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$, $Q = 10^5$ and variable resonance frequency f_r .
- Study of growth rate Vs frequency when $f_r \simeq f_p$ (not on top of CB line):
- Varying Q' = 0

• Only high frequency matches theory. At low frequency $\Delta f = 200 \text{MHz}/10^5 = 2 \text{kHz} < f_0$.

- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$, $Q = 10^5$ and variable resonance frequency f_r .
- Study of growth rate Vs frequency when f_r ≃ f_p (on top of CB line). The growth rates curves are on the right of the chromatic frequency given by f_ξ = f₀Q'/η.



• Only high frequency matches theory. At low frequency $\Delta f = 200 \text{MHz}/10^5 = 2 \text{kHz} < f_0$.

Growth-rate Vs azimuthal mode

- We study an equivalent case with $R_s = 1.4 \text{ G}\Omega/\text{m}$, $Q = 10^5$ and resonance frequency $f_r = 800 \text{ MHz}$.
- Q' = 0
- For a certain frequency, and a given limit rise-time, we can estimate the number of azimuthal modes *m* to consider for the stability studies.

R=1.4GΩ/m, Q100000, f_=800MHz

• The case "on top" can be considered as a pessimistic case.

N.Biancacci

Conclusions and outlook

Conclusions

- Reviewed the CB line distribution for HL-LHC 25 ns beams.
- CB lines are spaced by f_0 with clusters of f_s around them.
- HOMs with $\Delta f \ll f_0$ can drive CB lines unstable if falling on top of a CB line, as we resumed in the Sacherer simplified formula \rightarrow Growth rate depends only on R_s .
- HOMs with $\Delta f \ll f_0$ can be stable if falling within CB lines.
- HOMs with $\Delta f \ge f_0$ can drive many CB lines unstable but the effect tends to broaden \rightarrow Growth rate depends on both R_s and Q.
- Given a minimum threshold growth-rate we can estimate how many CB azimuthal mode *m* we need to consider harmful.

Future plans

- Study of the effect of damper with DELPHI.
- Update of the BNL HOM tables and estimation of HOM tolerances.
- ...?

Thanks for your attention!