Session 4: Data preservation lessons learnt and future prospects

LTDP in HEP: Status, lessons learnt and 2020 (2035 / 2050) outlook

Jamie Shiers CERN & DPHEP

International Collaboration for Data Preservation and Long Term Analysis in High Energy Physics

Outline

• Long-term

• Data Preservation

• Future Re-Use

• Lessons learnt & Outlook

LONG TERM

YEARS/ANS CERN

1954 2014

estables, applementes, per d'électre approved theorybood for more 2016. Referencie de constituenteur destableders approximations du party for results to the

-

CERN callebrates 60 years of to intern to topool Le CERN callebrate 65 and 10 an arrow is university in the

DELPHI

93 94 95

д 35 ф

30

25

20

15

10

88 89 90 91 92

N=2

N=3 N=4

- LEP ran as a Z⁰ factory;
- Then produced W[±] pairs;
- Energy scan up to 209 GeV

- Total data: ~500TB (0.5PB)
- This was "Big Data" at the time!
- LEP experiments faced "constant change" a first for HEP. Probably why data is still around!

The Large	Electron-Positron	Collider
-----------	--------------------------	----------

View 📑

LEP – the largest electron-positron accelerator ever built – was dismantled in 2000. Its 27-kilometre tunnel now hosts the LHC

LEP Events: approval, start / end of construction, start / end of data taking (~2 decades)

LEP Timeline

Date	Collider (e⁺e⁻)	Computing
1981	Approved by Council	Card readers still exist!
1983	Civil Engineering starts	Computing at CERN in the LEP era published
1988	LEP Tunnel completed	Data Management project requested by experiments
1989	1 st beams, collisions, and results	Was the s/w really ready?
1992	LHC Computing starts	Mainframes replaced
1996	LEP 2 (W pairs) starts	Unix, later PCs
2000	Final run of LEP	HEP gets bitten by Grid 🥨

Date	Collider
1981	Approve
1983	Civil Eng
1988	LEP Tun complet
1989	First bea collision
1992	LHC Cor
1996	LEP 2 (V
2000	Final rur

Cérémonie du Premier Coup de Piche CERN le mardi 13 Septembre 1983 le Président de la République française : François Mitterrand Le Président de la Confédération helvétique: C. C. Mont

it CERN in the ished ement project / experiments

still exist!

omputing Unix, later PCs

en by Grid

HEP has a long history of planning, financing and executing multi-decade projects

Study group considers how to preserve data

The management of the second sec The defaited the interiount, but how call New Second Stations Salary, Automatical a meangaing Set-permitter sprints.

a play a property pay shared a decision. So was in the ferrar of an international distance in a section. and a surplicity to an end of the second sec and the second states and a set fage as light a fighting area togeth if the fact reasts invited as 'no basis into different a Ana chair na ann tach ann an tharman Nas a' phat anait Morat a's at arbor is a at late of the Print of the State Print of the International contraction of some strength and some states and

als of the book of a set of services in section of the second

management with the state of the second second Nonia Veni astront for the montant shorts rock on the according common In a way of the case of which have been been CARLANDER INCOME.

a visit on a given in very little to make it

La plantig des a gale e i nui clea det rei to did adding press/technology and advectory of strategy with the state or other and the ---and the second second

ciad. the h and white a second tion (experies to constitute contraction writer, many in case of

-111111

04-0

100

-

DATA PRESERVATION

2020 Vision for LT DP in HEP

- <u>Long-term e.g. FCC timescales</u>: disruptive change
 - By 2020, all archived data e.g. that described in DPHEP Blueprint, including LHC data – easily findable, fully usable by designated communities with clear (Open) access policies and possibilities to annotate further
 - Best practices, tools and services well run-in, fully documented and sustainable; built in common with **other disciplines**, based on standards
 - DPHEP portal, through which data / tools accessed
 "HEP FAIRport": Findable, Accessible, Interoperable, Re-usable

Agree with Funding Agencies clear targets & metrics

Aspects of LT DP

- <u>A common approach across the main HEP labs worldwide, including:</u>
 - 1. Data (bit preservation) state of the art at exascale (1PB-10PB-100PB-1EB etc);
 - 2. Software (and environment) combination of validation + virtualisation;
 - **3.** Documentation (I would say "knowledge") digital library technologies + regular testing as part of training and data re-use
- LEP and other Colliders worldwide allow us to "see into the future" and compare different options for LTDP
- Expectation for LEP is that data will be usable (and used) until ~2030 3 decades after end of data taking! (Copy on disk + 2 on tape @ CERN!)
- Data will (should) be available much longer; "resurrection" of HEP data + software has been demonstrated but requires significant motivation + effort

ĩ	EUS Internal Notes	10 records found
1	1. Inclusive-jet production in NC DIS with H J. Terron C. Glasman, ZEUS-IN-09-004, References Bit-TeX LaTeX(US) La Datalied record - Similar records	ERA II. (TeX(EU) Harvman EndNote
2	2. Three-subjet distributions in neutral cum E. Ron C. Olauman, J. Terron. ZEUS-IN-09- References BibTeX LaTeX(US) Li Datated record - Similar records	ent deep inelastic scattering. 003. TeX(EU) Hanvmac EndNote
3	3. 2009 Guide to Funnel: The ZEUS Monte C A Parenti. ZEUS-IN-09-002. References BbTeX LaTeX/US) La Detailed record - Similar records	arlo Production Facility. (TaX(EU) Harvman EndNote
4	4 Automated calculation of radiative corre 1 Martin: ZEUS-IN-09-001. References 1 BibTeX (LaToX(US)) Ja Detailed.recotd - Similar records	ction to electron-proton charged current DIS at TeX(EU) Hamme: EndNote

http://science.energy.gov/funding-

opportunities/digital-data-management/

- "The focus of this statement is sharing and preservation of digital research data"
- All proposals submitted to the Office of Science (after 1 October 2014) for research funding must include a Data Management Plan (DMP) that addresses the following requirements:
- DMPs should describe whether and how data generated in the 1. course of the proposed research will be shared and preserved.

If the plan is not to share and/or preserve certain data, then the plan must explain the basis of the decision (for example, cost/benefit considerations, other parameters of feasibility, scientific appropriateness, or limitations discussed in #4).

At a minimum, DMPs must describe how data sharing and preservation will enable validation of results, or how results could be validated if data are not shared or preserved.

Science 8

RE-USE (= FUNDING)

1 – Long Tail of Papers

3

2 – New Theoretical Insights

Use Case Summary

- 1. Keep data usable for ~1 decade
- 2. Keep data usable for ~2 decades
- 3. Keep data usable for ~3 decades

Volume: 100PB + ~50PB/year (+500PB/year from 2025)

Use Cases – "all HEP"

- 1. Bit preservation basically OK (at CERN) but not a formal policy
 - Data taken by the experiments should be preserved
- 2. Preserve data, software, and know-how in the collaborations
 - Foundation for long-term DP strategy
 - Analysis reproducibility: Data preservation alongside software evolution
- 3. Share data and associated software with (larger) scientific community
 - Additional requirements:
 - Storage, distributed computing
 - Accessibility issues, intellectual property
 - Formalising and simplifying data format and analysis procedure
 - Documentation
- Open access to reduced data set to general public
 - Education and outreach
 - Continuous effort to provide meaningful examples and demonstrations
- Strategy and scope in approved policy documents for all (LHC+LEP) collaborations
 - <u>http://opendata.cern.ch/collection/data-policies</u>
 - LEP (and other?) access policies exist (L3?) need to be uploaded & given DOI

CAP Use Cases (I) (=know-how?)

- 1. The person having done (part of) an analysis is leaving the collaboration and has to hand over the know-how to other collaboration members.
- 2. A newcomer would like join a group working on some physics subject
- In a large collaboration, it may occur that two (groups of) people work independently on the same subject
- 4. There is a conflict between results of two collaborations on the same subject

CAP Use Cases (II)

- 5. A previous analysis has to be repeated
- 6. Data from several experiments, on the same physics subject, have to be statistically combined
- 7. A working group or management member within a collaboration wishes to know who else has worked on a particular dataset, software piece or MC
- 8. Presentation or publication is submitted for internal/collaboration review and approval: lack of comprehensive metadata
- 9. Preparing for Open Data Sharing

Lessons Learned recognize mistakes observe what works document them share them

LESSONS

- There are enormous benefits in working with other projects and disciplines: IMHO we have saved years (=money) AND we can also help others (if they want)
- 2. Having a Business Case and Cost Model is essential;
- 3. It is <u>never too early</u> to consider data preservation: early planning is likely to result in cost savings that may be significant. Furthermore, resources (and budget) beyond the data-taking lifetime of the projects should be foreseen <u>from the beginning</u>;
- 4. Caveat emptor: there are disruptive changes ahead. How does one prepare for these, particularly when a project is no longer in the active phase? (Don't get hooked on any particular technical solution – <u>it will</u> <u>change!</u>)

 There are enormous benefits in working with other projects and disciplines: IMHO we have saved years (=money) AND we can also help others <u>(if they want)</u>

0. You can justify it; afford it = do it!

the data-taking lifetime of the projects should be foreseen from the beginning;

4. Caveat emptor: there are disruptive changes ahead. How does one prepare for these, particularly when a project is no longer in the active phase? (Don't get hooked on any particular technical solution – <u>it will</u> <u>change!</u>)

OUTLOOK

- See DPHEP Workshop in Lisbon for more details, including:
 - Original DPHEP Blueprint (2012)
 - New status report (2015)
 - And key work items for 2016 and beyond

<u>https://indico.cern.ch/event/444264/</u>

Data Preservation in High Energy Physics The road to DPHEP

http://dphep.org

DPHEP/ICFA