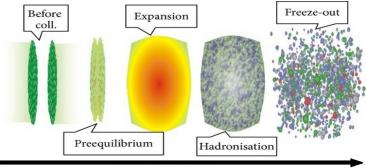

Zimanyi School 2014

Thermodynamically Anomalous Regions as a Mixed Phase Signal

<u>A.I. Ivanytskyi</u>, K.A. Bugaev, D.R. Oliinychenko, V.V. Sagun I.N. Mishustin, D.H. Rischke, L.M. Satarov and G.M. Zinovjev

> was supported by: NAS of Ukraine HIC_for_FAIR FRSF of Ukraine, No F58/04


QCD phase diagram

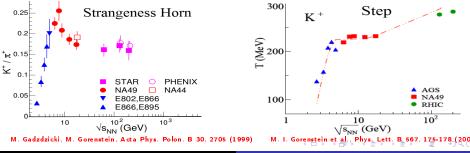
Phase transitions from hadrons to QGP

• are predicted theoretically (LQCD simulations, chiral limit calculations) Z.Fodor, C.Guse, S.Katz, K.Szabo, PoS. LAT 2007 R.D. Pisarski, F.Wilczek, PRD, 29 (1984)

Chemical freeze-out in heavy ion collisions

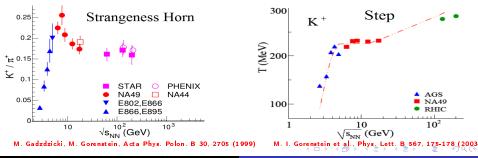
Time evolution

Chemical freeze-out (CFO) :

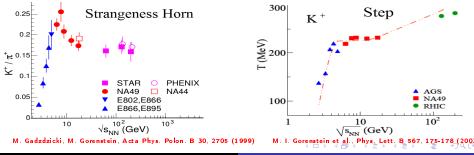

- equilibrium stage of heavy ion collision
 P. Braun-Munzinger et al., Phys. Lett. B 344, 43, (1995)
 J. Cleymans et al., Z. Phys. C 74, 319 (1997)
- moment when all inelastic reactions excluding decays cease out to exist
- chemical composition of the hadronic system after CFO is frozen
- formation of many particle yields

A.I. Ivanytskyi, K.A. Bugaev, D.R. Oliinychenko, V.V. Sag

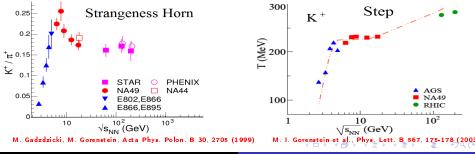
Thermodynamically Anomalous Regions as a Mixed Phas


Irregularities at CFO

Possible phase transformations in heavy ion collisions ↓ Qualitative changes in properties of strongly interacting system ↓ Irregular behavior of different physical observables Signals of phase transition in heavy ion collisions


Irregularities at CFO

These irregularities cannot be reproduced within the same model


Irregularities at CFO

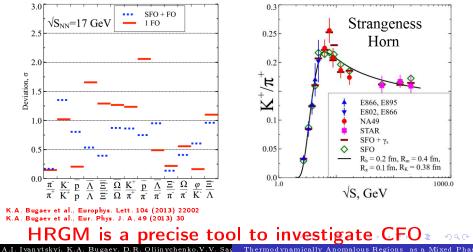
These irregularities cannot be reproduced within the same model ↓ We do not completely understand what they mean

Irregularities at CFO

These irregularities cannot be reproduced within the same model ↓ We do not completely understand what they mean ↓ New signals should be searched for

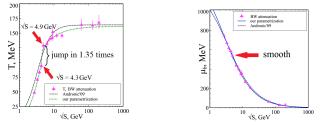
Hadron resonance gas model (HRGM)

- Thermal/chemical equilibrium \Rightarrow parameters: T, μ_B , μ_{I3} , μ_S P. Braun-Munzinger et al., Phys. Lett. B 344, 43, (1995) J. Cleymans et al., Z. Phys. C 74, 319 (1997)
- All hadrons from PDG tables with masses up to 3.2 GeV K.A. Bugaev et al., Eur. Phys. J. A 49, 30 (2013)
- Multicomponent hard-core repulsion \Rightarrow Van der Wals type equation of state

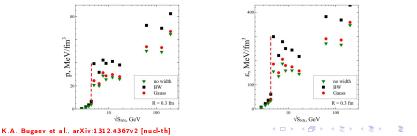

 $R_{\pi} = 0.1 ~ {\rm fm}, ~~ R_{\rm K} = 0.38 ~ {\rm fm}, ~~ R_{\rm meson} = 0.4 ~ {\rm fm}, ~~ R_{\rm baryon} = 0.2 ~ {\rm fm}$ K.A. Bugaev et al., Europhys. Lett. 104, 22002 (2013)

- Width of hadrons \Rightarrow modification of one particle thermal density by Gauss or Breit-Wigner mass attenuation
- Strong Decays \Rightarrow modification of particle densities from thermal to total ones according to values of branching ratios

・ロト ・同ト ・ヨト ・ヨト

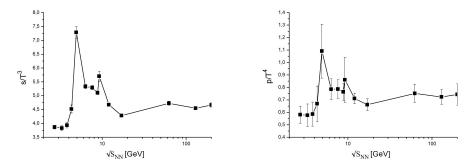

HRGM and particle yields at CFO

• 111 independent hadron ratios measured at $\sqrt{S_{NN}} = 2.7 - 200$ GeV are fitted with $\chi^2/dof = 1.06$, even most problematic Strangeness Horn (K⁺/ π^+) is reproduced with $\chi^2/dof = 7.5/14$



HRGM and non smooth CFO

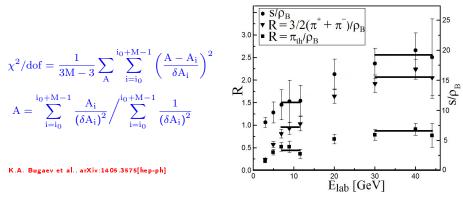
 $\bullet\,$ Temperature $T_{\rm CFO}$ as a function of collision energy \sqrt{s} is rather non smooth



• Significant jump of pressure ($\simeq 6$ times) and energy density ($\simeq 5$ times)

HRGM and irregularities at CFO

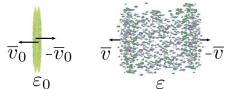
• Narrow range of collision energy $\sqrt{S_{NN}} = 4.3 - 4.5$ GeV or $E_{lab} = 8.6 - 11.6$ GeV exhibits significant jumps of s/T^3 and p/T^4 , which describe a number of effective degrees of freedom



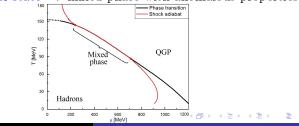
K.A. Bugaev et al., arXiv:1405.3575[hep-ph]

What is the origin of these irregularities at CFO? Phase transition?

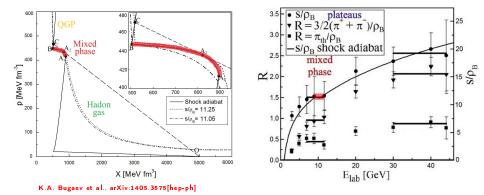
Observation of plateaus


- Mixed phase formation \Rightarrow plateaus in {s/ $\rho_{\rm B}$, $\rho_{\pi}^{\rm th}/\rho_{\rm B}$, $\rho_{\pi}^{\rm tot}/\rho_{\rm B}$ } vs E_{lab} K.A.Bugaev, M.I.Gorenstein, D.H.Rischke, Phys.Lett.B 255,1,18(1991)
- Plateaus are correlated \Rightarrow they have the same width M and location i_0
- Minimization of $\chi^2/\text{dof} \Rightarrow \text{heights of plateaus A} \in \{s/\rho_B, \ \rho_\pi^{\text{th}}/\rho_B, \ \rho_\pi^{\text{tot}}/\rho_B\}$

The low energy plateaus are located where irregularities domexist and a contract of the second secon


Generalized Shock Adiabat Model

• Hydrodynamic model of central nuclear collisions at $1 \text{ GeV} \le E_{lab} \le 30 \text{ GeV}$ H. Stöcker, W. Greiner, Phys. Rep 137, 277 (1986)


Solution of 1D Hydro \Rightarrow evolution along generalized shock adiabat (GSA) K.A. Bugaev, M.I. Gorenstein, B. Kampher, V.I. Zhdanov, Phys. Rev. D 40, 9, (1989) K.A. Bugaev, M.I. Gorenstein, D.H. Rischke, Phys. Lett. B 255, 1, 18 (1991)

• Two phase equation of state \Rightarrow mixed phase with anomalous properties

GSA Model and mixed phase formation

$$X = \frac{\varepsilon + p}{\rho_p^2}$$
 – generalized specific volume

GSA Model explains irregularities at CFO as a signature of mixed phase

- On the basis of high quality experimental data fit it is shown that narrow range of collision energy $\sqrt{S_{NN}} = 4.3 4.5$ GeV contains remarkable irregularities in various thermodynamic quantities.
- Plateaus in dependence of s/ρ_B , π^{th}/ρ_B and π^{tot}/ρ_B on collision energy are found.
- Within Generalized Shock Adiabat Model the plateau-like behavior of s/ρ_B is explained as a signature of QGP formation.

Thank you for your attention

A.I. Ivanytskyi, K.A. Bugaev, D.R. Oliinychenko, V.V. Sag Thermodynamically Anomalous Regions as a Mixed Phase

3 →

Characteristics of correlated plateaus

- Common width M number of points belonging to each plateau
- $\bullet \ {\rm Common \ beginning \ } i_0$ first point of each plateau
- For every M, i_0 minimization of χ^2 /dof yields A $\in \{s/\rho_B, \rho_{\pi}^{th}/\rho_B, \rho_{\pi}^{tot}/\rho_B\}$:

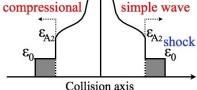
$$\chi^{2}/dof = \frac{1}{3M-3} \sum_{A}^{i_{0}+M-1} \left(\frac{A-A_{i}}{\delta A_{i}}\right)^{2} \quad \Rightarrow \quad A = \sum_{i=i_{0}}^{i_{0}+M-1} \frac{A_{i}}{(\delta A_{i})^{2}} / \sum_{i=i_{0}}^{i_{0}+M-1} \frac{1}{(\delta A_{i})^{2}}$$

	Low energy plateau				
M	i ₀	$s/ ho_{ m B}$	$ ho_{\pi}^{ m th}/ ho_{ m B}$	$ ho_{\pi}^{ m tot}/ ho_{ m B}$	χ^2/dof
2	3	11.12	0.52	0.85	0.17
3	3	11.31	0.46	0.89	0.53
4	2	10.55	0.43	0.72	1.64
5	2	11.53	0.47	0.84	4.45
	High energy plateau				
2	8	19.80	0.88	2.20	0.12
3	7	18.77	0.83	2.05	0.34
4	6	17.82	0.77	1.87	0.87
5	5	16.26	0.64	1.62	3.72
<u> </u>				•	

A.I. Ivanytskyi, K.A. Bugaev, D.R. Oliinychenko, V.V. Sag

Thermodynamically Anomalous Regions as a Mixed Phas

Generalized shock adiabat model


- GSAM describes central nuclear collisions at $E_{\rm lab} \leq 30~{\rm GeV}$ K.A. Bugaev, M.I. Gorenstein, B. Kampher, V.I. Zhdanov, Phys. Rev. D 40.9, (1989)
- Hydrodynamic solution compressional simple wave and shock ⇒ Rankine-Hugoniot-Taub abiabat
 E ↑ mixed phase

 $(
ho_{\rm b}{\rm X})^2 - (
ho_0{\rm X}_0)^2 - ({\rm p}-{\rm p}_0)({\rm X}+{\rm X}_0) = 0$ co

$$X = \frac{\epsilon + p}{\rho_{b}^{2}}$$
, initial state $-\rho_{0}$, X_{0} and p_{0}

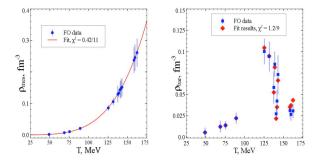
• Collision energy per nucleon

$$\Sigma_{
m lab} = 2 \mathrm{m_n} \left(rac{(\mathrm{p} + \epsilon_0)(\mathrm{p}_0 + \epsilon)}{(\mathrm{p} + \epsilon)(\mathrm{p}_0 + \epsilon_0)} - 1
ight)$$

• Thermodynamic properties of medium are defined by $\Sigma \equiv \left(\frac{\partial^2 p}{\partial X^2}\right)_{s/\rho_B=const}^{-1}$ $\Sigma > 0$ – normal properties are typical for one phase regions

 $\Sigma < 0$ – anomalous properties are typical for mixed phase regions \Rightarrow plateaus K.A. Bugaev, M.I. Gorenstein, D.H. Rischke, Phys. Lett. B 255,1,18(1991)

• Two phase equation of state


Hadron gas - summation of hadronic spectrum \Rightarrow (anti)baryonic and mesonic contributions QGP - MIT-Bag model Chodos A. et. al., Phys. Rev. D 9, 3471 (1974): $\Rightarrow \langle \overline{\sigma} \rangle \langle \overline{z} \rangle \langle \overline$

Effective hadronic equation of state

• Summation of hadronic spectrum \Rightarrow (anti)baryonic and mesonic contributions

$$p = \left[\overbrace{2C_{B}T^{A_{B}}ch\left(\frac{\mu}{T}\right)e^{-\frac{m_{B}}{T}}}^{(anti)baryons} + \overbrace{C_{M}T^{A_{M}}e^{-\frac{m_{M}}{T}}}^{mesons}\right]e^{-\frac{pV_{E}}{T}}$$

• Effective EoS describes (anti)baryonic and mesonic densities at CFO

K.Bugaev et al. PoS Baldin ISHEPP XXI (2012) 017, arXiv:1212.0132 [hep-ph]