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Motivation

• Functional methods at finite density are of great interest,
because of the phase diagram of strongly interacting
matter.

• Understanding the subtleties which lie in the
renormalization of 2PI at finite µ.

• Understanding the Silver Blaze phenomenon in a simple
model.

• In Andersen, PRD 75 065011 (2007) pion condensation is
discussed in LO-1/N approximation of 2PI. Some general
features are hidden, which are present in the 2-loop
approximation.

• Therefore as a first step we chose the charged scalar
model, and included chemical potential in it.



Introduction to 2PI

A bilocal source is introduced in the generating functional

Z[J,K] = eW [J,K] =

∫
Dϕ exp

[
− S0 − Sint + ϕ · J + ϕ ·K · ϕ

]
The 2PI effective action defined through a double Legendre transform

γ[φ,G] = W [J,K]−
∫
d4x

δW [J,K]

δJ(x)︸ ︷︷ ︸
φ(x)

J(x)−
∫
d4x

∫
d4y

δW [J,K]

δK(x, y)︸ ︷︷ ︸
[φ(x)φ(y)+G(x,y)]/2

K(x, y)

The physical φ̄(x) and Ḡ(x, y) are determined from stationarity conditions at
vanishing sources (J,K → 0)

δγ[φ,G]

δφ(x)

∣∣∣∣
φ̄(x)

= 0,
δγ[φ,G]

δG(x, y)

∣∣∣∣
Ḡ(x,y)

= 0



γ[φ,G] can be written as shown in Cornwall et al., PRD 10, 2428 (1974)

γ[φ,G] = S0(φ) +
1

2
Tr logG−1 +

1

2
Tr
[
G−1

0 G− 1
]

+ γint[φ,G]

S0 is the free action,
G0 is the free propagator,
γint[φ,G] contains all the 2PI graphs constructed with vertices from Sint(φ+ ϕ).
The Tr is to be understood in all indices and as integration over coordinates.

The 1PI effective action is recovered: Γ1PI[φ] = γ[φ, Ḡ].

The chemical potential only enters through the free action S0 and the free
propagator G0.



Equations
The symmetry of the theory is SO(2) in the presence of µ. We represent the field

as ϕ =

(
ϕ1

ϕ2

)
, ϕa ∈ R, and 〈ϕa〉 = δa,1φ. The free and full propagators are

G−1
0 =

(
Z0Q

2+m2
0−Z0µ

2 −2Z0µω

2Z0µω Z0Q
2+m2

0−Z0µ
2

)
and G =

(
GL GA

−GA GT

)
.

The 2PI potential truncated at 2-loops can written as

γ[φ,GL, GT , GA] =
1

2
Tr

∫ T

Q

[
log(G−1(Q)) +G−1

0 (Q) ·G(Q)
]

+
1

2
(m2

2 − µ2Z2)φ2

+
λ4φ

4

48
+
λ

(A+2B)
2

24
+
λ

(A)
2

24
+
λ

(A+2B)
0

48
+
λ

(A)
0

24

+
λ

(A+2B)
0

48
− λ2

?

144

[
3 +

+2

(
3 −

)]
,

λ
(αA+βB)
0,2 ≡ αλ(A)

0,2 + βλ
(B)
0,2 , GL = , GT = , GA = , φ = .



Equations
The field expectation value φ and the components of the full propagator are
determined from stationarity conditions:

0 =
δγ[φ,GL, GT , GA]

δφ

∣∣∣∣
φ̄,ḠL,ḠT ,ḠA

=
δγ[φ,GL, GT , GA]

δGL

∣∣∣∣
φ,ḠL,ḠT ,ḠA

=
δγ[φ,GL, GT , GA]

δGT

∣∣∣∣
φ,ḠL,ḠT ,ḠA

=
δγ[φ,GL, GT , GA]

δGA

∣∣∣∣
φ,ḠL,ḠT ,ḠA

,

which yield equations for the gap masses defined from the inverse propagator:

M̄2
L,T (Q) =

ḠT,L
ḠLḠT + Ḡ 2

A

+ Z0(µ2 −Q2),

M̄2
A(Q) = − ḠA

ḠLḠT + Ḡ 2
A

+ Z02µω,

and the field equation with the structure

0 = φ̄f̃(φ̄, ḠL(φ = φ̄), ḠT (φ = φ̄), ḠA(φ = φ̄)) = φ̄f(φ̄).



Curvature masses

To study the phase transition we monitor the curvature mass tensor. It is defined
using the 1PI potential

γ(φ) ≡ γ[φ, ḠL, ḠT , ḠA]

as

M̂2
ab =

∂2γ(φ)

∂φa∂φb
+ δabµ

2 = M̂2
L

φaφb
φ2

+ M̂2
T

(
δab −

φaφb
φ2

)
.

Evaluating the derivatives yield

M̂2
L = 4φ̄2 df(φ)

dφ

∣∣∣∣
φ̄

+ 2f(φ̄) + µ2, M̂2
T = 2f(φ̄) + µ2

At φ̄ = 0 : M̂2
L = M̂2

T (symmetry restoration), at φ̄ 6= 0 : M̂2
T = µ2 (Goldstone

theorem).



Numerics

We solve the coupled field and gap equations iteratively.

We discretize the propagators on a Nτ ×Ns grid:

ωn = 2πnT, n ∈ [0..Nτ − 1], and k = (s+ 1)
Λ

Ns
, s ∈ [0..Ns − 1].

• Numerical method was developed in Markó et al., PRD 86 085031 (2012).

• Rotation invariance⇒ only 1D in momentum space.

• Convolutions are done using FFT techniques.

• Only adjustment needed: GA → ωngA. While FFT is also applicable to odd
functions, the stored frequencies would be shifted, which in the iterative
process of solving the equations leads to loss of information.



Silver Blaze

We can formulate our theory using complex fields as well:

Φ =
1√
2

(ϕ1 + iϕ2) , and Φ∗ =
1√
2

(ϕ1 − iϕ2) .

Then the Lagrangian is invariant under the gauge-transformation

Φ→ eiατΦ , Φ∗ → e−iατΦ∗ , µ→ µ− iα .

• Zµ = Zµ−iα provided that α = ωn, a Matsubara-frequency in order to maintain
the periodicity of the fields.

• T 6= 0: Periodicity in the imaginary µ direction (Roberge-Weiss periodicity).

• T = 0: ωn becomes continuous→ analytic continuation: Zµ is µ-independent
up to analyticity boundary µc. This is the Silver Blaze property Cohen, Phys.
Rev. Lett. 91, 222001 (2003)

• Generalization to n-point functions at T = φ = 0: µ-dependence is just a shift
of external frequencies.



Silver Blaze
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• In any 2PI truncation the Silver Blaze
is realized.

• Provided UV regularization and
discretization keeps the
gauge-transformation property.

• We use finite Matsubara-frequencies.
We have to take the T → 0 limit such
that 2πNτT →∞.

• On the lattice µ is introduced on links,
similarly to gauge fields.



Renormalization
Renormalization is based on Markó et al., PRD 87 105001 (2013).

• Prescriptions on 2- and 4-point functions.

• Multiply defined n-point functions⇒ Renorm conditions AND consistency
conditions in terms of two parameters: m2

?, λ?.

• At T = T? (fixed renormalization scale), µ = φ̄ = 0.

• No new counterterms are needed compared to µ = 0 case.

• Except for field renormalization, which is special in the homogeneous 2-loop
approximation.

• At 2-loop order: no diagram in the gap equation has momentum dependent
divergence.
But the field equation has the setting-sun at zero external momentum
(homogeneity).

• Shift of external frequencies by µ in n-point functions: need for Z2.



Renormalization
In line with the other prescriptions, we require:

d

dµ2
M̂2
φ=0

∣∣∣∣∣
T?,µ=0

= 1− α ,

d

dµ2
M̂2
φ=0

∣∣∣∣∣
T?,µ=0

=
d

dµ2
M̄2
φ=0

∣∣∣∣∣
T?,µ=0

.

Which lead to the following expressions for the field normalizations:

Z2 = Z0 +
λ2
?

6
B?[G?](0)

(
∂T [D̄]

∂µ2

) ∣∣∣∣∣
T?,µ=0

− λ2
?

18

(
∂S[D̄, D̄∗, D̄]

∂µ2

) ∣∣∣∣∣
T?,µ=0

,

Z0 = α+
λ?
3

∂T [D̄]

∂µ2

∣∣∣∣∣
T?,µ=0

, with D̄−1(Q) = (ωn + iµ)2 + q2 + M̄2
φ=0 .

• Z0 is finite, as the tadpole has no µ
dependent divergence.

• α dependence only through Z0. We
choose Z0, no new parameter.



Transition line
The transition temperature at chemical potential µ, is determined by

M̂2
φ=0;T=Tc(µ),µ = µ2 or M̄2

φ=0;T=T̄c(µ),µ = µ2 .

The µ = 0 existence of Tc (T̄c) splits the m2
? − λ? parameter plane in two
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Comparison: 2-loop vs. Hartree-Fock
The density is defined as

ρ =
1

βV

∂ lnZ

∂µ
= µφ̄2 + µ

∫
Q

(ḠL(Q) + ḠT (Q))− 2

∫
Q

ωnḠA(Q) .

We compare the iso-density lines at given parameters in the H-F and the 2-loop
approximations:
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Comparison: Hartree-Fock vs. Lattice
This comparison was shown in G. Aarts, JHEP 0905 (2009) 052.
The H-F approximation, using the

• bare lattice action,

• at fixed lattice spacing,

• in the symmetric phase,

reproduces the lattice results:
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Comparison: 2-loop vs. Lattice
We compare ρ/µ3

c as a function of µ/µc, and see a qualitative, but not
quantitative agreement. Lattice results are from Gattringer et al., Nucl. Phys. B
869, 56 (2013).
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Why?



Comparison: 2-loop vs. Lattice
On the lattice: bare theory, at fixed
lattice spacing.

Our 2PI: renormalized theory, in the
”continuum” limit.

• Cut-off effects are not small, as the inverse lattice spacing is comparable to
physical quantities (e.g. aµc ≈ 1.15).

• We did not use the lattice action→ even the bare theories differ.

Choice of parameters based on the reproduction of the Tc(µ) curve.
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Loss of solution
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We define µ̄c(T ) as

M̄2
φ=0,T,µ=µ̄c(T ) = µ̄2

c ,

which is the inverse of T̄c(µ).

• µ > µ̄c(T )→ no
solution for gap eq at φ = 0.

• φc(µ, T ): the smallest φ
for which a solution
of the gap equations exists.

• Solution of the coupled gap
and field equations is lost
when: φ̄(µ, T ) < φc(µ, T ).



Loss of solution

A more general look: two problems tightly connected.

• M̄2
T − µ2 < 0

• Renders integrals meaningless.

• If Goldstone’s theorem is
not obeyed, this may always
happen.

• Symmetry improvements
ensuring GS theorem [see
Pilaftsis et al., Nucl.Phys. B
874 (2013)]

• M̄2
T − µ2 becoming small, or

zero.

• May lead to infrared
divergences.

• Further resummations are
needed to tame them.

• Vertex resummations are good
candidates, e.g. NLO-1/N .



Conclusions

Renormalization program and numerical method successfully extended to
µ 6= 0.

Parameter space divided into SSB and BEC regions.

We understood and generalized the Silver Blaze property using symmetry
properties.

The used truncation preserves the Silver Blaze property.

We found qualitative agreement with lattice results.

At high T and µ the solution is lost, could be a general problem.

Merge the project with the O(4) investigations to study pion condensation.




