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QGP or the perfect quark liquid

Quark-Gluon-Plasma (QGP): ,,perfect fluid of quarks”

Extremly localized in space-time

Mapping of dynamic behavior of QGP is difficult but
interesting task

Single-particle observables: not completely satisfactory

Measurement and analysis of Bose-Einstein correlations: a
tool to explore the shape of the produced matter in a heavy
ion collision
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Correlations between particles

after the hadronization process, correlations between identical
particles can be observed

momentum space correlations between bosons

the origin of these correlations is quantum mechanical

they are intrinsically connected to the space-time shape of the
particle source (the produced QGP)
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Calculation of Bose-Einstein correlation

source function: S(x , p)

symmetrized wave function of n particles: ψ(n)(x1...xn)

momentum distribution of n particles:

Nn(p1...pn) :=

∫
d3x1...d

3xnS(x1,p1)...S(xn,pn)|ψ(n)(x1...xn)|2

correlation function of n particles: Cn(p1...pn) := Nn(p1..pn)∏n
i=1 N1(pi )
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The simplest situation

Two particles (symmetrization easy)

Use of Gaussian distribution as source function:

S(x, k) =
K0√

(2πR)3
exp

{
− x2

2R2

}
exp

{
− k2

2mT

}
no final state interaction between particles:∣∣∣ψ(2)(x1, x2)

∣∣∣2 = 1 + cos [(k1 − k2)(x1 − x2)]

So we arrive at the correlation function as

C 0
2 (k1, k2) = 1 + exp

{
−R2(k2 − k1)2

}
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In practice

Fit the correlation function to measured data in the most easy
situation (two particle, no interaction, Gaussian distribution as
source function)

the measured data don’t fit → problems with the model

Next step: to take into account the Coulomb interaction, and
supplement the model with the core-halo picture
T. Csörgő, B. Lörstad and J. Zimányi, Z.Phys. C71 (1996) 491

This model can be fitted using an iterative method

the iterated term: Cmeas
2

C0
2 (k1,k2,β)

C c
2 (k1,k2,β) = C c

2 (k1, k2, β)

This takes the Coulomb interaction into account properly
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Lévy distribution as source function

The symmetric Lévy distribution has the form:

L(R, α, r) = 1
(2π)3

∫
d3qe iqre−

|qR|α
2

Lévy distributions are stable under convolution, so they are
limiting distributions (just as Gaussians in the finite variance
case)
the used source function in the core-halo picture:

L(Rc ,Rh, α,X±
x

2
, λ, α) =

√
λLc(Rc , α,X±

x

2
) + (1−

√
λ)Lh(Rh, α,X±

x

2
)

the convolution of two Lévy distributions in the variable

X : L12(Rcc ,Rch,Rhhα, x, λ, α) = λLcc(Rcc , α, x)

+2
√
λ(1−

√
λ)Lch(Rch, α, x) + (1−

√
λ)2Lhh(Rhh, α, x)
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The two particle Coulomb wave function

two-particles symmetrized wave function in Coulomb
interacting case:

ψc(x,X) =

N√
2

e iKX
{

e ikxF (−iη, 1, i(kx − kx))− e−ikxF (iη, 1, i(kx + kx))
}

where F (a, b, z) the confluent hypergeometric function is:

F (a, b, z) :=
∑∞

n=0
Γ(a+n)Γ(b)
Γ(b+n)Γ(a)

zn

n!

the two-particle distribution have to calculate numerical:
N(k1, k2) =

∫
d3xL12(Rcc ,Rch,Rhhα, x, λ, α) |ψc(x,X)|

after reduction of the numerical problem the correlation
function becomes: C c

2 (α,Rcc , λ) = N(k1, k2)
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The numerical method used by us

calculate the value of integrals, and then save them

not the most conventional method

we can investigate the parameter space of the Lévy
distribution

fitting of the model to the measured data is faster (original
iterative method very cumbersome for Lévy distributions)
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The result of the calculations with R = const and
λ = const for different α values
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The result of the calculations with R = const and
λ = const for different α values
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The result of the calculations with λ = const and
α = const for different R values
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The result of the calculations with λ = const and
α = const for different R values
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The result of the calculations with R = const and
α = const for different λ values
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The result of the calculations with R = const and
α = const for different λ values
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Summary of results

We worked out a new method of the calculation of the HBT
correlation functions for Lévy type sources

Fitting of Lévy sources becomes significantly faster

Lévy sources: generalization of Gaussian case, with long-range
component in the source function

Utilizing the method for real-life correlation function fitting is
underway

However, our systematic investigation suggests that fit results
for parameters will be strongly correlated
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Thank you for your attention.
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