Backtracking algorithm for lepton reconstruction with HADES

PATRICK SELLHEIM

FOR THE HADES COLLABORATION

——|l|lll Helmholtz Research School
HGS-HIRe for FAIR
Helmholtz Graduate School for Hadron and Ion Research

Motivation

 Backtracking Results
Motivation

R. Rapp, J. Wambach, Adv.Nucl.Phys. 25 (2000)
Y. B. Ivanov, V. N. Russkikh, V. D. Toneev, Phys. Rev. C 73 (2006) 044904.

- Investigation of long lived ($\tau \approx 10 \mathrm{fm} / \mathrm{c}$) strongly interacting matter at $\mathrm{T}<100 \mathrm{MeV}$ and high densities $\left(\rho / \rho_{0}>2\right)$
- System is baryon dominated
- In-medium modifications of vector meson spectral functions

Motivation

EM probes in heavy ion collisions

γ, γ^{*} do not interact strongly

- Can be used to extract primary information of hot and dense phase γ, γ^{*} are produced in all collision stages
- Contributions from all stages have to be identified precisely γ, γ^{*} probe EM structure of strongly interacting matter
- Invariant mass monitors directly spectral function

Challenges and needs

γ, γ^{*} are very rare probes

- Dilepton production is suppressed by factor α^{2} : Corresponds to branching ratio $\cong 10^{-5}$
- At SIS 18 energy range vector mesons are produced sub-threshold

Fast detector

- 10-50 kHz trigger rate

Large acceptance

- $18^{\circ}<\theta<85^{\circ}$ (polar angle)
- Full azimuthal angle

Precise particle identification

- Hadron identification by means of time-of-flight
- Electron identification using RICH and EM shower
Excellent mass resolution
- $15 \mathrm{MeV} / \mathrm{c}^{2}$ in the vector meson region

HADES experiment

Tracking system: 4 drift chamber planes + superconducting magnet

Time-of-flight detectors: RPC + TOF for hadron identification

Ring Imaging Cherenkov detector (RICH) and PreShower: Lepton
identification

Side view

Front view:

Event display of Au+Au beamtime at $1.23 \mathrm{GeV} / \mathrm{U}$

Motivation Backtracking Results

Backtracking

Track preselection

- Selection of good lepton candidates based on particle velocity and energy loss
Determination of possible ring centers
- Based on angular information provided by reconstructed particle tracks
Previous knowledge of close pairs
- Track resolution: Better than 2°
- Ring resolution : Opening angle > 4°

Implementation

Transformation from track angles to pad plane coordinates

Position depended parameterization of rings

Information extraction out of measured signals

Implementation

Transformation from track angles to pad plane coordinates

Position depended parameterization of rings

Information extraction out

 of measured signals

Implementation

Transformation from track angles to pad plane coordinates

Position depended parameterization of rings

Information extraction out of measured signals

: Fired RICH pad
X: Maximum position

Motivation Backtracking
Results

Analysis strategy

Lepton identification

Pairing and invariant mass

- Backtracking information
- PreShower information
- Energy loss in drift chambers
- Track matching quality
- Polar angle
- Energy loss in outer ToF detector

Lepton identification results

Ring finder vs backtracking

Trade-off between purity and high efficiency

Close pair rejection

- Pairing of all possible combinations
- Subtraction of same-event likesign background:
Geometrical mean $=2 \sqrt{N_{++} N_{--}}$

Larger background due to increased combinations
Larger error after background subtraction
Remove conversion pairs to reduce background

Combinatorial background

Close pair reje
RICH ring finder

- Opening angle > 7° Backtracking
- Opening angle > 7°
- Rings without shared maxima

Combinatorial background

Background reduction by up to a factor of 4 !

Conclusion \& outlook

- Combinatorial background reduced by up to a factor of 4
- Higher efficiency improves close pair identification \rightarrow lower systematical errors
- Multi-differential analysis of invariant mass spectrum (p_{T}, angular distribution,...)

The HADES Collaboration

Backup

Output variables

Particle observables

- \# clusters
- \# maxima (= \# photons)
- \# pads (of ring, clusters)
- Charge (of ring, clusters)
- Quality (maxima positions)
- \# Pads outside ring prediction

Pair observables

- \# Maxima shared with various tracks
- \# Maxima shared with one track
- Opening angle between particle candidates

Ring quality calculation

- Calculation of distance between maximum position and ring prediction
- Ring χ^{2} calculation and application

$$
\chi_{B t}^{2}=\frac{\sqrt{\sum^{n} \frac{{\sqrt{\Delta x^{2}+\Delta y^{2}}}^{2}}{\sqrt{\sigma_{G e o m}^{2}+\sigma_{E r r}^{2}}}}}{n}
$$

$$
\begin{array}{ll}
d=\sqrt{\Delta x^{2}+\Delta y^{2}} & n=\text { Number of maxima } \\
\sigma_{E r r}=\frac{1}{2} \text { Pad } & \sigma_{G e o m}=\text { Photon distribution width }
\end{array}
$$

Maximum search

Maximum8: 1 Photon Maximum4 : 2 Photons

Maximum 7

If $Q>Q_{2}$

$\rightarrow Q_{1}=2$. Maximum

Analysis strategy

Neural network

Background sample

- rotated RICH data
- mass > $100 \mathrm{MeV} / \mathrm{c} \wedge 2$

Signal sample

- Simulation with Geant PID

$$
=2,3
$$

- Weak classifier: maxima > 0
- Strong classifier: maxima > 1

Event selection

- PT3
- GoodVertex()
- GoodStartTimeWidth()

MVA response of strong classifier

RPC

- Backtracking information
- β
- MDC and TOF dE/dx
- PreShower information

TOF

- Meta matching quality
- Ф per sector
- Runge kutta χ^{2}
- Charge

Invariant mass in π^{0} region

Combinatorial background reduced by factor $\cong 4$

