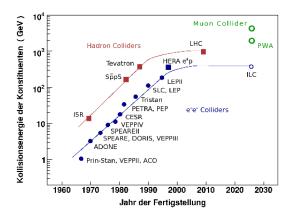
THE CONTRIBUTION OF THE WIGNER RCP TO THE CERN AWAKE EXPERIMENT

Mihály András Pocsai


Wigner Research Centre for Physics of the HAS

3rd of December, 2014 Zimányi School 2014

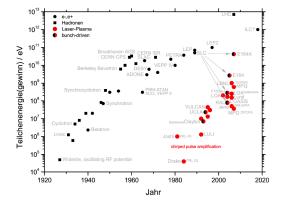
- Present State-of-the-Art technology: circular accelerator, 8.3 T, 14 TeV
- \bullet Limit: accelerating field $<50\,MV/m$ (in linear colliders $100\,MV/m).$

How further → VLHC? (Future Circular Collider Kick Off Meeting, February 2014, Geneva)

Figure 9. Two possible location, upon geological study, of the 80 km ring for a Super HE-LHC (option at left is strongly preferred)

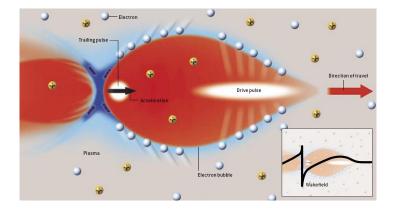
VLHC may provide:

- 80 km and 8.3 T \rightarrow 42 TeV
- 80 km and 15 T \rightarrow 80 TeV
- 80 km and 20 T \rightarrow 100 TeV
- 100 km and 15 T \rightarrow 100 TeV


VLHC requires the invention of 15 T and 20 T magnets.

Extremely expensive!

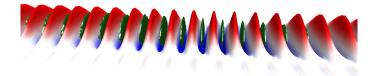
New, cheaper technologies are needed \rightarrow Plasma based acceleration!



Plasma wakes accelerate particles. Plasma wakes are driven by either laser pulses or particle beams. Possible methods (Tajima and Dawson, Phys. Rev. Lett. **43**, 267 (1979), E. Esarey *et. al:* Rev. Mod. Phys. **81**, 1229 (2009) etc.):

- **LWFA:** Short (\approx 1 ps), ultra-intense $I \ge 10^{18} \text{W} \cdot \text{cm}^{-2}$ pulse. $L = c\tau_p \approx \lambda_p = 2\pi c/\omega_p$, $n = 10^{15} \text{ cm}^{-3}$.
- **PBWA:** Beat-wave of two pulses, $\omega_1 \omega_2 \sim \omega_p$, $n = 10^{16} 10^{17} \, \text{cm}^{-3}$. An alternative for LWFA.
- **Self-modulated LWFA:** LWFA by higher plasma densities. $n=10^{19}\,\mathrm{cm^{-3}},\,I\approx10^{19}\,\mathrm{W\cdot cm^{-2}},\,L>\lambda_p.$ A train of pulses with pulse length $L=\lambda_p$ is formed.
- Beam-driven: a short (few hundred microns at most) particle bunch is capable to drive plasma wakes.
- Multiple pulses or bunches: plasma waves with greater amplitude via resonant excitation.

Electron-Driven Plasma Wakefield Acceleration:



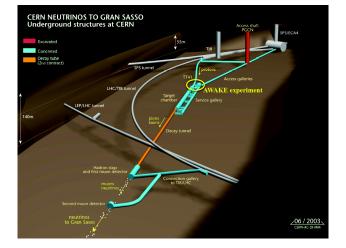
AWAKE: Proton Driven Plasma Wakefield Acceleration (PDPWFA).

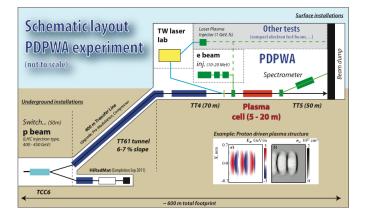
The key point is the **Self-Modulation Instability** (the SPS beam is around 20 cm long).

Electrons injected between the short bunches.

(Required) properties for Rb the plasma:

- $T_{\text{melt}} = 38.89 \,^{\circ}\text{C}$
- $T = 180 220 \,^{\circ}\text{C}$, $\delta T \le 0.25\%$ that is $\Delta T < 0.5 \,^{\circ}\text{K}$
- I = 5 10m
- $n = 7 \cdot 10^{14} \, \text{cm}^{-3}$, $\delta n < 0.2 \%$
- 100 %, single ionisation.


Birdeye View of the CNGS—AWAKE Spot

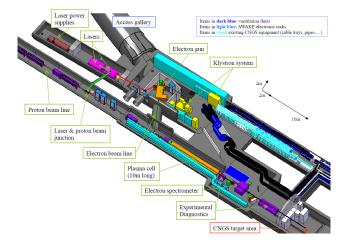

The CNGS Area

Schematic View of the Experiment

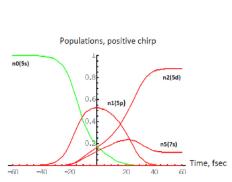
Time-Scale as in the CERN Medium-Term Plan

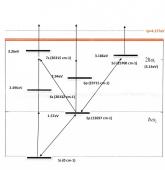
Time-scale for AWAKE in the MTP

Needed CERN resources:

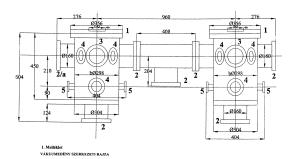

Costs: 8.5 CHF Person-Years: 34.2 PY

→ Budget and manpower profile for 5 years


The Experiment Area

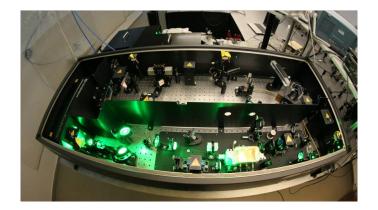


Theoretical contribution: resonant pre-excitation of the Rb vapour could improve the experiment. (M. Aladi *et. al*, Nucl. Instr. Meth. Phys. Res. A **740**, 203–207 (2014))



Experimental Contribution:

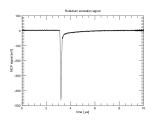
- Production of homogeneous Rb plasma (75 cm) long
- Plasma diagnostics


Laser parameters:

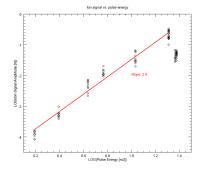
- 806 nm Mean Wavelength
- 4.1 W Average Power
- 9 mm Beam Diameter
- Linear, Vertical Polarization
- 1 kHz Repetition Rate
- 35 fs Pulse Duration
- 4.2 mJ Pulse Energy

HELIOS Laser in the Wigner RCP

HELIOS Laser in the Wigner RCP



Present Setup and Recent Results:



The signal of the MCP was closed with 50 Ohm in the oscilloscope, the noise was filtered with a 11 point smoothing algorithm, saturated ionisation current is measured.

Present Setup and Recent Results:

The three-photon ionisation process has been almost measured!

Further work (both experimental and theoretical):

- Building the 75 cm long plasma source
- Plasma Diagnostics (temperature, density, homogeneity)
- Theoretical Description of the Ionisation Process, "Extending" the PIC Simulations

Thank You for Your Attention!

