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Motivation

how some simple effects influence time evolution of asymmetries

effects which can’t be discussed analytically

not real initial condition (e.g. from Monte-Carlo simulation): real
simulation mixes effects

initial condition close to exact solution but more realistic
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Equations of hydrodynamics

Equations of hydrodynamics

Nonrelativistic hydrodynamics:

∂ρ

∂t
+∇ρv = 0 (1)

ρ
(∂v

∂t
+ (v∇)v

)
= −∇p + µ∆v+

(
ζ +

µ

3

)
∇(∇v) + f (2)

∂ε

∂t
+∇εv = −p∇v+∇(σv) (3)

We need an EoS:
ε = κ(T )p (4)

Relativistic case:

T µν =
(
ε + p

)uµuν

c2
− pgµν, ∂µT

µν = 0 (5)
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Equations of hydrodynamics

Multipole solution

New exact solution of relativistic
hydrodynamics by Máté Csanád and
András Szabó, published Phys.Rev. C90
(2014) 054911

The solution in cylindrical coordinates:

uµ = xµ

τ , n = nf
(

τf
τ

)3
ν(s),

p = pf
(

τf
τ

)3+3/κ

Where τ is the coordinate-proper time,
τf is the freeze-out proper time

The s scale variable with any
asymmetries

s = rN

RN

(
1 + εN cosNφ

)
+ zN

RN

That’s a solution if R = utt
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Numerical scheme

Numerical scheme

At mid-rapidity distributions have local maximum and are constant in
its environment, so enough to solve hydro in 2+1 dimension

Transform equations to advection from:
∂tQi + ∂xFi (Q) + ∂yGi (Q) = 0

Solve numerically: discretization

Finite volume method: average of quantities in control volume, that
contains the grid point

Problem: we have to evaluate fluxes between grid points, exactly not
possible

Instability: we can add to real solution a wave solution which is null
at grid points → Courant–Friedrichs–Lewy condition (e.g.
C = u∆t/∆x < 1)

2 spatial dimension difficult → operator splitting

Viscosity: ideal substep + step only with viscous fluxes
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Numerical scheme

Numerical scheme: MUSTA method

This method was published by E. F. Toro et al, 2006, J. Comp. Phys

The l th predicted values: Q
(l)
i/(i+1)

, F
(l)
i/(i+1)

≡ F
(
Q

(l)
i/(i+1)

)
Initially: Q

(0)
i ≡ Qn

i , Q
(0)
i+1 ≡ Qn

i+1

Intermediate value and flux:

Q
(l)

i+ 1
2

=
1

2

[
Q

(l)
i +Q

(l)
i+1

]
− 1

2

∆t

∆x

[
F
(l)
i+1 − F

(l)
i

]
, F

(l)
M ≡ F

(
Q

(l)

i+ 1
2

)
(6)

Corrected flux:

F
(l)

i+ 1
2

=
1

4

[
F
(l)
i+1 + 2F

(l)
M + F

(l)
i −

∆x

∆t

(
Q

(l)
i+1 −Q

(l)
i

)]
(7)

Next prediction to compute corrected flux:

Q
(l+1)
i = Q

(l)
i −

∆t

∆x

[
F
(l)

i+ 1
2

− F
(l)
i

]
(8)

Q
(l+1)
i+1 = Q

(l)
i+1 −

∆t

∆x

[
F
(l)
i+1 − F

(l)

i+ 1
2

]
(9)
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Code testing

Code testing

We tested our code with exact solutions (from PRC67 (2003)):

s = x2

X 2(t)
+ y2

Y 2(t)
, ρ = ρ0

V0
V e−s , p = p0

(
V0
V

)1+ 1
κ ,

v(t, r) =
(
Ẋ
X x , Ẏ

Y y
)
, ẌX = Ÿ Y = Ti

m

(
V0
V

) 1
κ , V = X (t)Y (t)

Relative difference between exact and numerical solution (X = Y and
X 6= Y case):
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Description of asymmetries

We defined as asymmetry parameters: εn = 〈cos(nφ)〉ρ/w/p

The w = exp (−v2
x − v2

y ) is defined to calculate the asymmetry of
speed distribution

This εn not equal with the ε in s scale variable (ρ, p ∝ exp (−s))
Initially we can approximate εn with εn using Taylor-series:

ε1 =
(ε2 + ε4)ε3

2 + ∑4
n=2 ε2

n

(10)

ε2 =
−ε2 + ε2ε4

2 + ∑4
n=2 ε2

n

(11)

ε3 =
−ε3

2 + ∑4
n=2 ε2

n

(12)

ε4 =
−ε4 +

1
2 ε2

2

2 + ∑4
n=2 ε2

n

(13)
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Nonrelativistic results

Effect of viscosity

In energy and mass density the viscosity makes slower the
disappearance

In speed distribution makes faster
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Nonrelativistic results

Effect of viscosity: The time evolution of energy density
µ
=

0
M

eV
fm

/c
µ
=

10
M

eV
fm

/c
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Nonrelativistic results

Effect of viscosity: The time evolution of speed distribution
µ
=

0
M

eV
fm

/c
µ
=

10
M

eV
fm

/c
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Nonrelativistic results

Effect of speed of sound

As we expected the reduction of speed of sound makes the time
evolution of asymmetries slower
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Nonrelativistic results

Effect of pressure gradient

The increase gradient of pressure makes the flow faster, so the
asymmetries disappear faster
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Relativistic results

Effect of speed of sound

Same as nonrelativistic case

Different time to hadronization
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Relativistic results

Effect of pressure gradient

Same as nonrelativistic case
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Hadronization

Hadronization

Maxwell-Jüttner type source function:

S(x , p)d4x = N n(x) exp

(
− pµu

µ

T (x)

)
H(τ)pµd

3 uµd
3x

u0 dτ

With source function we can simply calculate the measurable
quantities: vn(pt) = 〈cos(nϕ)〉N = 1

N(pt )

∫ 2π
0 N(pt , ϕ) cos(nϕ)dϕ
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Summary

Summary

Motivation: how some simple effects affect time evolution of
asymmetries

No much chance for analytic discussion so we used numerical methods

Initial condition was very close to the existing exact solutions, but
more realistic

Viscosity makes slower the disappearance of asymmetries in energy
density and faster in speed distribution

Smaller speed of sound makes slower time evolution in all distribution,
more time to hadronization
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