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Temperature and energy do fluctuate
Finite Heat Bath and Fluctuation Effects

RHIC and LHC spectra

Gauss approximation
Gaussian is insufficient
Beta- and Gamma-distribution

Theoretical equation of state: S(E)

Product of the spreads of energy and temperature

∆E ·∆β = 1 (1)

Connection to the (absolute) temperature:
C = dE/dT heat capacity, β = 1/T

|C|∆T · ∆T
T 2 = 1 (2)

The relative spread in temperature is the one over square root
of the heat capacity!

∆T
T

=
∆β

β
=

1√
|C|

(3)

The heat capacity C is proportional to the size of the heat bath –
mostly.

BVBU Power-Law Emergence 3 / 35



Temperature and energy do fluctuate
Finite Heat Bath and Fluctuation Effects

RHIC and LHC spectra

Gauss approximation
Gaussian is insufficient
Beta- and Gamma-distribution

Gauss distributed reciprocial temperature, β

w(β) =
1√
2πσ

e−
(β−1/T0)2

2σ2 (4)

Average

〈β 〉 =
1
T0

Spread (square root of variance)

∆β = σ =
1

T0
√
|C|
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Gaussian Fluctuations; Figure
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Superstatistics: single particle energy distribution

Canonical distribution in additive thermodynamics:

pi = p(Ei) = eβ(µ−Ei ). (5)

If β fluctuates according to Gauss, then the exponential weight
factor averages to the characteristic function〈

e−βω
〉

= e−ω/T0 e σ2ω2/2. (6)

Turning point: the largest single particle energy, where this can
make a sense...

Emax
i − µ = ωmax =

1
σ2T0

= |C|T0. (7)
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Figure on Thermal Spectra with Gaussian
β-distribution
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Deficiences of the Gaussian Picture

1 There is a finite probability, w(β) > 0, for β < 0

2
〈

e−βω
〉

does not diminish for large ω (this cannot be a
canonical spectrum)
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Gauss approximation
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Beta- and Gamma-distribution

Ideal Gas: Thermodynamics

EoS
p = nT , e =

1
3

p.

Heat Capacity:

E =
1
3

pV =
1
3

NT ; C =
dE
dT

=
1
3

N.

fix N: C(T ) constant; C(S) constant; We have to solve:

dT
dE

=

(
1
S′

)′
= − S′′

(S′)2 =
1
C
. (8)
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Ideal Gas: Thermodynamics

Constant Heat Capacity − S′′
(S′)2 = 1

C .

Integrals: temperature and entropy

T =
1
S′

=
E
C

+ T0, S = C ln
(

1 +
E

CT0

)
+ S0.

Mutual info based probability (phase volume product)

P(E1) = eS1+S2−S12 ∝
(

1 +
E1

C1T0

)C1
(

1 +
E − E1

C2T0

)C2

BVBU Power-Law Emergence 10 / 35



Temperature and energy do fluctuate
Finite Heat Bath and Fluctuation Effects

RHIC and LHC spectra

Gauss approximation
Gaussian is insufficient
Beta- and Gamma-distribution

Ideal Gas: temperature distribution

It is an Euler-Beta distribution

P(T1) ∝ T C1
1

(
T∗ −

C1

C2
(T1 − T∗)

)C2

in the scaling variable: x = C1T1/(C1 + C2)T∗ = C∗T1/C2T∗

B(x) =
Γ(C1 + C2 + 2)

Γ(C1 + 1)Γ(C2 + 1)
xC1 (1− x)C2

Beta distribution in x , binomial in C1 at fix C1 + C2, NBD at fix C2.
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Ideal Gas: limits

Huge reservoir (C2 →∞: with t = C1T1/T∗)
Euler-Gamma

lim
C2→∞

B(x) dx =
1

Γ(C1 + 1)
t C1 e−t dt .
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Euler fitted to Gaussian Uncertainty

Average: 〈β 〉 = v
a = 1

T , Spread: ∆β
〈β 〉 = 1√

v = ∆T
T = 1√

|C|

The corresponding Euler-Gamma distribution for β = 1/T∗:

w(β) =
(|C|T )|C|

Γ(|C|)
β|C|−1 e−|C|Tβ. (9)

Characteristic function = spectrum

〈
e−βω

〉
=

(
1 +

ω

|C|T

)−|C|
−→
|C|→∞

e−ω/T . (10)

BVBU Power-Law Emergence 13 / 35



Temperature and energy do fluctuate
Finite Heat Bath and Fluctuation Effects

RHIC and LHC spectra

Gauss approximation
Gaussian is insufficient
Beta- and Gamma-distribution

Plot Eulerian Fluctuations
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Gaussian is insufficient
Beta- and Gamma-distribution

Plot Eulerian Spectra and RHIC results as blast wave
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The physics behind the power law
Particle Number Fluctuations

Finite Reservoirs

Avogadro number (atoms in classical matter) ∼ 1024

Neurons in human brain ∼ 1012

Internet users in 2014 ∼ 109

New particles from heavy ion collisons ∼ 103

From elementary high energy collisions (pp) ∼ 101

General expectation:
smaller size→ larger relative fluctuations.
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The physics behind the power law
Particle Number Fluctuations

Ideal Gas: microcanonical statistical weight

The one-particle energy, ω, out of total energy, E , is distributed
in a one-dimensional relativistic jet according to a statistical
weight factor which depends on the number of particles in the
reservoir, n:

P1(ω) =
Ω1(ω) Ωn(E − ω)

Ωn+1(E)
= ρ(ω) · (E − ω)n

En (11)

HEP Superstatistics: E fix, n has a distribution (based on the
physical model of the reservoir and on the event by event detection of
the spectra).
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The physics behind the power law
Particle Number Fluctuations

Phase Volume Ratio is a q < 1 Tsallis–Pareto

Thermodynamic limit:

lim
n→∞

lim
E→nT

(
1− ω

E

)n
= e−ω/T . (12)

Compare with Tsallis distribution:(
1− ω

E

)n
=
(

1 + (q − 1)
ω

T

)− 1
q−1

, (13)

If and only if

T =
E
n
, q = 1− 1

n
. (14)
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The physics behind the power law
Particle Number Fluctuations

Ideal Reservoir: (Negative) binomial n-distribution

n particles among k cells: bosons
(n+k

n

)
fermions

(k
n

)
A subspace (n, k) out of (N,K )

Limit: K →∞ , N →∞; average occupancy f = N/K is fixed.

Bn,k (f ) := lim
K→∞

(n+k
n

)(N−n+K−k
N−n

)(N+K +1
N

) =

(
n + k

n

)
f n (1 + f )−n−k−1.

(15)

Fn,k (f ) := lim
K→∞

(k
n

)(K−k
N−n

)(K
N

) =

(
k
n

)
f n (1− f )k−n. (16)
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The physics behind the power law
Particle Number Fluctuations

Norm and Pascal triangle

Binomial expansion:

(a + b)k =
∞∑

n=0

(
k
n

)
anbk−n (17)

Replace k by −k − 1 and a by −a, noting that
(−k − 1

n

)
=

(−k − 1)(−k − 2) . . . (−k − n)

n!
= (−1)n (k + 1)(k + 2) . . . (k + n)

n!
= (−1)n

(n + k

n

)
.

we arrive at

(b − a)−k−1 =
∞∑

n=0

(
n + k

n

)
anb−n−k−1 (18)
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The physics behind the power law
Particle Number Fluctuations

BD recursion: Pascal Triangle

Fn,k = f Fn−1,k−1 + (1− f ) Fn,k−1 (19)
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The physics behind the power law
Particle Number Fluctuations

NBD recursion: Tilted Pascal Triangle

Bn,k =
f

1 + f
Bn−1,k +

1
1 + f

Bn,k−1 (20)
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The physics behind the power law
Particle Number Fluctuations

Bosonic reservoir

Reservoir in hep: E is fixed, n fluctuates according to NBD.

∞∑
n=0

(
1− ω

E

)n
Bn,k (f ) =

[
(1 + f )− f

(
1− ω

E

)]−k−1
=
(

1 + f
ω

E

)−k−1

(21)
Note that 〈n 〉 = (k + 1)f for NBD. Then with T = E/ 〈n 〉 and
q − 1 = 1

k+1 we get (
1 + (q − 1)

ω

T

)− 1
q−1

This is exactly a q > 1 Tsallis-Pareto distribution.
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The physics behind the power law
Particle Number Fluctuations

Fermionic reservoir

E is fixed, n is distributed according to BD:

∞∑
n=0

(
1− ω

E

)n
Fn,k (f ) =

[
(1− f ) + f

(
1− ω

E

)]k
=
(

1− f
ω

E

)k

(22)
Note that 〈n 〉 = kf for BD. Then with T = E/ 〈n 〉 and
q − 1 = − 1

k we get (
1 + (q − 1)

ω

T

)− 1
q−1

This is exactly a q < 1 Tsallis-Pareto distribution.
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The physics behind the power law
Particle Number Fluctuations

Boltzmann limit
In the k � n limit (low occupancy in phase space)

(n + k

n

)
f n(1 + f )−n−k−1 −→

kn

n!

( f

1 + f

)n
. . .

(k

n

)
f n(1− f )k−n −→

kn

n!

( f

1− f

)n
. . . (23)

After normalization this is the Poisson distribution:

Πn =
〈n 〉n

n!
e−〈 n 〉 with 〈n 〉 = k

f
1± f

(24)

The result is exactly the Boltzmann-Gibbs weight factor:

∞∑
n=0

(
1− ω

E

)n
Πn(〈n 〉) = e−ω/T . (25)
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The physics behind the power law
Particle Number Fluctuations

Summary of reservoir fluctuation models

〈 (
1− ω

E

)n
〉

Bernoulli
= Tsallis(q < 1)

〈 (
1− ω

E

)n
〉

Possion
= Boltzmann(q = 1)

〈 (
1− ω

E

)n
〉

NBD
= Tsallis(q > 1) (26)

In all the three above cases

T =
E
〈n 〉

, and q =
〈n(n − 1) 〉
〈n 〉2

(27)
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The physics behind the power law
Particle Number Fluctuations

Ideal gas with general n-fluctuations

Canonical approach: expansion for small ω � E .
Tsallis-Pareto distribution as an approximation:(

1 + (q − 1)
ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2 − . . . (28)

Ideal reservoir phase space up to the subleading canonical limit:〈(
1− ω

E

)n
〉

= 1− 〈 n 〉 ω
E

+ 〈n(n − 1) 〉 ω
2

2E2 − . . . (29)

To subleading in ω � E

T =
E
〈n 〉

, q =
〈n(n− 1) 〉
〈n 〉2

= 1−
1
〈 n 〉

+
∆n2

〈 n 〉2
. (30)
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The physics behind the power law
Particle Number Fluctuations

General system with general reservoir fluctuations
Canonical approach: expansion for small ω � E .〈

Ωn(E − ω)

Ωn(E)

〉
=
〈

eS(E−ω)−S(E)
〉

=
〈

e−ωS′(E)+ω2S′′(E)/2−...
〉

= 1− ω
〈

S′(E)
〉

+
ω2

2

〈
S′(E)2 + S′′(E)

〉
− . . . (31)

Compare with expansion of Tsallis(
1 + (q − 1)

ω

T

)− 1
q−1

= 1− ω

T
+ q

ω2

2T 2 − . . . (32)

Interpret the parameters

1
T

= 〈S′(E) 〉 , q = 1−
1
C

+
∆T 2

T 2
(33)

〈S′′(E) 〉 = −1/CT 2 expressed via the heat capacity of the reservoir,1/C=dT/dE
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The physics behind the power law
Particle Number Fluctuations

Understanding the parameter q in terms fluctuations

Opposite sign contributions from
〈

S′ 2
〉
−〈S′ 〉2 and from 〈S′′ 〉.

In all cases approximately

q = 1−
1
C

+
∆T 2

T 2
.

q > 1 and q < 1 are both possible
for any relative variance ∆T/T = 1/

√
C it is exactly q = 1

for nT = E/dim = const it is ∆T/ 〈T 〉 = ∆n/ 〈n 〉.
for ideal gas and n distributed as NBD or BD, the Tsallis
form is exact
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Experimental NBD distributions PHENIX PRC 78 (2008) 044902

Au + Au collisons at
√

sNN = 62 (left) and 200 GeV (right). Total
charged multiplicities.

k ≈ 10− 20 → q ≈ 1.05− 1.10.
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Statistical vs QCD power-law

The experimental fact for hadrons is NBD!

QCD power-law: size-independent power (k + 1) > 4

statistical power: (k + 1) = 〈n 〉 /f ∝ reservoir size

consider data fits: k + 1 powers vs Npart

soft and hard power-laws should differ for large Npart
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Soft and Hard Tsallis fits:

ALICE PLB 720 (2013) 52; PHENIX PRL 101 (2008) 232301

the knick is around pT ≈ 4− 5 GeV.
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Hard and Soft Trends with Npart arxiv: 1405.3963

C = k + 1 powers of the power law and fitted T parameters (ALICE).
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Soft Powers vs Npart arxiv: 1405.3963

Only the soft ( ”statistical” ) branches for PHENIX and ALICE:
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Summary

The (measured and calculated) temperature surely
fluctuates, but is not Gaussian.

Ideal Gas prefers the Beta or Gamma distribution for T
estimators.

NBD particle number fluctuations generate exact Tsallis
distribution with q > 1.
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