

arxiv: 1404.1256, 1405.3813, 1405.3963, 1409.5975

Emergence of **Power Law** in Statistical Hadronization

T.S. Biró P. Ván G.G. Barnaföldi K. Ürmössy

Heavy Ion Research Group

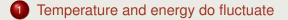
MTA (wigner Research Centre for Physics, Budapest

December 4, 2014

Talk given by T. S. Biró at Zimanyi School, Budapest, 2014.12.01.-05.

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Content



2 Finite Heat Bath and Fluctuation Effects

・ロト ・ 同ト ・ ヨト ・ ヨト

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Content

Temperature and energy do fluctuate

- Gauss approximation
- Gaussian is insufficient
- Beta- and Gamma-distribution

2 Finite Heat Bath and Fluctuation Effects

3 RHIC and LHC spectra

・ロト ・ 同ト ・ ヨト ・ ヨト

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

S(E)

Theoretical equation of state:

Product of the spreads of energy and temperature

$$\Delta E \cdot \Delta \beta = 1 \tag{1}$$

Connection to the (absolute) temperature:

C = dE/dT heat capacity, $\beta = 1/T$

$$|C|\Delta T \cdot \frac{\Delta T}{T^2} = 1$$
 (2)

The relative spread in temperature is the one over square root of the heat capacity!

$$\frac{\Delta T}{T} = \frac{\Delta \beta}{\beta} = \frac{1}{\sqrt{|C|}} \tag{3}$$

The heat capacity *C* is proportional to the size of the heat bath – mostly.

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Gauss distributed reciprocial temperature, β

$$w(\beta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\beta - 1/T_0)^2}{2\sigma^2}}$$
 (4)

Average

$$\langle \beta \rangle = \frac{1}{T_0}$$

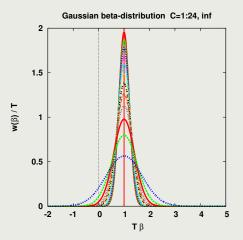
Spread (square root of variance)

$$\Delta\beta = \sigma = \frac{1}{T_0\sqrt{|C|}}$$

イロン イボン イヨン イヨン

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Gaussian Fluctuations; Figure



Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Superstatistics: single particle energy distribution

Canonical distribution in additive thermodynamics:

$$\boldsymbol{\rho}_i = \boldsymbol{\rho}(\boldsymbol{E}_i) = \boldsymbol{e}^{\beta(\mu - \boldsymbol{E}_i)}. \tag{5}$$

If β fluctuates according to Gauss, then the exponential weight factor averages to the **characteristic function**

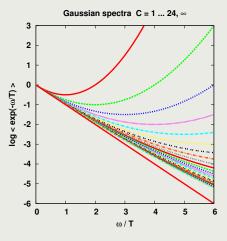
$$\left\langle e^{-\beta\omega} \right\rangle = e^{-\omega/T_0} e^{\sigma^2 \omega^2/2}.$$
 (6)

Turning point: the largest single particle energy, where this can make a sense...

$$E_i^{\max} - \mu = \omega^{\max} = \frac{1}{\sigma^2 T_0} = |C| T_0.$$
 (7)

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Figure on Thermal Spectra with Gaussian β -distribution



Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Deficiences of the Gaussian Picture

- There is a finite probability, $w(\beta) > 0$, for $\beta < 0$
- 2 $\langle e^{-\beta\omega} \rangle$ does not diminish for large ω (this cannot be a canonical spectrum)

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Ideal Gas: Thermodynamics

EoS

$$p=nT, \qquad e=rac{1}{3}p.$$

Heat Capacity:

$$E = \frac{1}{3}pV = \frac{1}{3}NT;$$
 $C = \frac{dE}{dT} = \frac{1}{3}N.$

fix N: C(T) constant; C(S) constant; We have to solve:

$$\frac{dT}{dE} = \left(\frac{1}{S'}\right)' = -\frac{S''}{(S')^2} = \frac{1}{C}.$$
(8)

イロン イボン イヨン イヨン

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Ideal Gas: Thermodynamics

Constant Heat Capacity

$$-\frac{S''}{(S')^2}=\frac{1}{C}.$$

Integrals: temperature and entropy

$$T=rac{1}{S'}=rac{E}{C}+T_0,\qquad S=C\ln\left(1+rac{E}{CT_0}
ight)+S_0.$$

Mutual info based probability

(phase volume product)

イロン イボン イヨン イヨン

$$\mathfrak{P}(E_1) = e^{S_1 + S_2 - S_{12}} \propto \left(1 + \frac{E_1}{C_1 T_0}\right)^{C_1} \left(1 + \frac{E - E_1}{C_2 T_0}\right)^{C_2}$$

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Ideal Gas: temperature distribution

lt is an

Euler-Beta distribution

$$\mathfrak{P}(T_1) \propto T_1^{C_1} \left(T_* - \frac{C_1}{C_2}(T_1 - T_*)\right)^{C_2}$$

in the scaling variable: $x = C_1 T_1 / (C_1 + C_2) T_* = C_* T_1 / C_2 T_*$

$$\mathfrak{B}(x) = \frac{\Gamma(C_1 + C_2 + 2)}{\Gamma(C_1 + 1)\Gamma(C_2 + 1)} x^{C_1} (1 - x)^{C_2}$$

Beta distribution in x, binomial in C_1 at fix $C_1 + C_2$, NBD at fix C_2 .

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Ideal Gas: limits

• Huge reservoir $(C_2 \rightarrow \infty)$: with $t = C_1 T_1 / T_*$ Euler-Gamma

$$\lim_{C_2\to\infty}\mathfrak{B}(x)\,dx=\frac{1}{\Gamma(C_1+1)}\,t^{C_1}\,\mathrm{e}^{-t}\,dt.$$

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Euler fitted to Gaussian Uncertainty

Average:
$$\langle \beta \rangle = \frac{v}{a} = \frac{1}{T}$$
, Spread: $\frac{\Delta \beta}{\langle \beta \rangle} = \frac{1}{\sqrt{v}} = \frac{\Delta T}{T} = \frac{1}{\sqrt{|C|}}$

The corresponding Euler-Gamma distribution for $\beta = 1/T_*$:

$$w(\beta) = \frac{(|C|T)^{|C|}}{\Gamma(|C|)} \beta^{|C|-1} e^{-|C|T\beta}.$$
 (9)

Characteristic function = **spectrum**

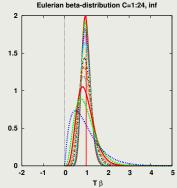
$$\left\langle e^{-\beta\omega} \right\rangle = \left(1 + \frac{\omega}{|C|T}\right)^{-|C|} \xrightarrow[|C| \to \infty]{} e^{-\omega/T}.$$
 (10)

・ロト ・ ア・ ・ ヨト ・ ヨト

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Plot Eulerian Fluctuations

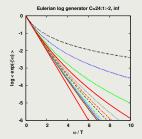
BVBU

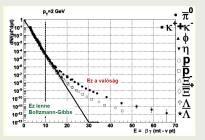


・ロト ・ 同ト ・ ヨト ・ ヨト

Gauss approximation Gaussian is insufficient Beta- and Gamma-distribution

Plot Eulerian Spectra and RHIC results as blast wave





イロン イボン イヨン イヨン

æ

The physics behind the power law Particle Number Fluctuations

Content

- Pinite Heat Bath and Fluctuation Effects
 - The physics behind the power law
 - Particle Number Fluctuations

・ロト ・ 同ト ・ ヨト ・ ヨト

The physics behind the power law Particle Number Fluctuations

Finite Reservoirs

• Avogadro number (atoms in classical matter)	$\sim 10^{24}$
Neurons in human brain	$\sim 10^{12}$
Internet users in 2014	$\sim 10^9$
• New particles from heavy ion collisons	$\sim 10^3$
• From elementary high energy collisions (pp)	$\sim 10^{1}$

General expectation:

smaller size \rightarrow larger *relative* fluctuations.

The physics behind the power law Particle Number Fluctuations

Ideal Gas: microcanonical statistical weight

The one-particle energy, ω , out of total energy, *E*, is distributed in a one-dimensional relativistic jet according to a statistical weight factor which depends on the number of particles in the reservoir, *n*:

$$P_{1}(\omega) = \frac{\Omega_{1}(\omega) \Omega_{n}(E - \omega)}{\Omega_{n+1}(E)} = \rho(\omega) \cdot \frac{(E - \omega)^{n}}{E^{n}}$$
(11)

HEP Superstatistics: *E* fix, *n* has a distribution (based on the physical model of the reservoir and on the event by event detection of the spectra).

The physics behind the power law Particle Number Fluctuations

Phase Volume Ratio is a q < 1 Tsallis–Pareto

Thermodynamic limit:

$$\lim_{n\to\infty} \lim_{E\to nT} \left(1-\frac{\omega}{E}\right)^n = e^{-\omega/T}.$$
 (12)

Compare with Tsallis distribution:

$$\left(1-\frac{\omega}{E}\right)^n = \left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}},$$
 (13)

If and only if

$$T = \frac{E}{n}, \qquad q = 1 - \frac{1}{n}. \tag{14}$$

The physics behind the power law Particle Number Fluctuations

Ideal Reservoir: (Negative) binomial n-distribution

n particles among *k* cells: bosons $\binom{n+k}{n}$ fermions $\binom{k}{n}$ A subspace (n, k) out of (N, K)Limit: $K \to \infty$, $N \to \infty$; average occupancy f = N/K is fixed.

$$B_{n,k}(f) := \lim_{K \to \infty} \frac{\binom{n+k}{n} \binom{N-n+K-k}{N-n}}{\binom{N+K+1}{N}} = \binom{n+k}{n} f^n (1+f)^{-n-k-1}.$$
(15)

$$F_{n,k}(f) := \lim_{K \to \infty} \frac{\binom{k}{n}\binom{K-k}{N-n}}{\binom{K}{N}} = \binom{k}{n} f^n (1-f)^{k-n}.$$
(16)

The physics behind the power law Particle Number Fluctuations

Norm and Pascal triangle

Binomial expansion:

$$(a+b)^{k} = \sum_{n=0}^{\infty} \binom{k}{n} a^{n} b^{k-n}$$
(17)

Replace k by -k - 1 and a by -a, noting that

$$\binom{-k-1}{n} = \frac{(-k-1)(-k-2)\dots(-k-n)}{n!} = (-1)^n \frac{(k+1)(k+2)\dots(k+n)}{n!} = (-1)^n \binom{n+k}{n}.$$

we arrive at

$$(b-a)^{-k-1} = \sum_{n=0}^{\infty} {n+k \choose n} a^n b^{-n-k-1}$$
 (18)

The physics behind the power law Particle Number Fluctuations

BD recursion: Pascal Triangle

$$F_{n,k} = f F_{n-1,k-1} + (1-f) F_{n,k-1}$$
(19)

The physics behind the power law Particle Number Fluctuations

NBD recursion: Tilted Pascal Triangle

$$B_{n,k} = \frac{f}{1+f} B_{n-1,k} + \frac{1}{1+f} B_{n,k-1}$$
(20)

The physics behind the power law Particle Number Fluctuations

Bosonic reservoir

Reservoir in hep: *E* is fixed, *n* fluctuates according to NBD.

$$\sum_{n=0}^{\infty} \left(1 - \frac{\omega}{E}\right)^n B_{n,k}(f) = \left[(1+f) - f\left(1 - \frac{\omega}{E}\right)\right]^{-k-1} = \left(1 + f\frac{\omega}{E}\right)^{-k-1}$$
(21)
Note that $\langle n \rangle = (k+1)f$ for NBD. Then with $T = E/\langle n \rangle$ and
 $q-1 = \frac{1}{k+1}$ we get

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}}$$

This is **exactly** a q > 1 Tsallis-Pareto distribution.

The physics behind the power law Particle Number Fluctuations

Fermionic reservoir

E is fixed, *n* is distributed according to BD:

$$\sum_{n=0}^{\infty} \left(1 - \frac{\omega}{E}\right)^n F_{n,k}(f) = \left[(1 - f) + f\left(1 - \frac{\omega}{E}\right)\right]^k = \left(1 - f\frac{\omega}{E}\right)^k$$
(22)

Note that $\langle n \rangle = kf$ for BD. Then with $T = E / \langle n \rangle$ and $q - 1 = -\frac{1}{k}$ we get

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}}$$

This is **exactly** a q < 1 Tsallis-Pareto distribution.

The physics behind the power law Particle Number Fluctuations

Boltzmann limit

In the $k \gg n$ limit (low occupancy in phase space)

$$\binom{n+k}{n}f^{n}(1+f)^{-n-k-1} \longrightarrow \frac{k^{n}}{n!} \left(\frac{f}{1+f}\right)^{n} \dots$$
$$\binom{k}{n}f^{n}(1-f)^{k-n} \longrightarrow \frac{k^{n}}{n!} \left(\frac{f}{1-f}\right)^{n} \dots$$
(23)

After normalization this is the **Poisson** distribution:

$$\Pi_n = \frac{\langle n \rangle^n}{n!} e^{-\langle n \rangle} \quad \text{with} \quad \langle n \rangle = k \frac{f}{1 \pm f}$$
(24)

The result is **exactly** the Boltzmann-Gibbs weight factor:

$$\sum_{n=0}^{\infty} \left(1 - \frac{\omega}{E}\right)^n \Pi_n(\langle n \rangle) = e^{-\omega/T}.$$
 (25)

The physics behind the power law Particle Number Fluctuations

Summary of reservoir fluctuation models

$$\left\langle \left(1 - \frac{\omega}{E}\right)^{n} \right\rangle_{\text{Bernoulli}} = \text{Tsallis}(q < 1)$$

$$\left\langle \left(1 - \frac{\omega}{E}\right)^{n} \right\rangle_{\text{Possion}} = \text{Boltzmann}(q = 1)$$

$$\left\langle \left(1 - \frac{\omega}{E}\right)^{n} \right\rangle_{\text{NBD}} = \text{Tsallis}(q > 1)$$
(26)

In all the three above cases

$$T = \frac{E}{\langle n \rangle}$$
, and $q = \frac{\langle n(n-1) \rangle}{\langle n \rangle^2}$ (27)

The physics behind the power law Particle Number Fluctuations

Ideal gas with general *n*-fluctuations

Canonical approach: expansion for small $\omega \ll E$. Tsallis-Pareto distribution as an approximation:

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}} = 1-\frac{\omega}{T}+q\frac{\omega^2}{2T^2}-\dots$$
 (28)

Ideal reservoir phase space up to the subleading canonical limit:

$$\left\langle \left(1-\frac{\omega}{E}\right)^n\right\rangle = 1-\left\langle n\right\rangle \frac{\omega}{E} + \left\langle n(n-1)\right\rangle \frac{\omega^2}{2E^2} - \dots$$
 (29)

To subleading in $\omega \ll E$

$$\mathbf{T} = \frac{\mathbf{E}}{\langle \mathbf{n} \rangle}, \qquad \mathbf{q} = \frac{\langle \mathbf{n}(\mathbf{n}-\mathbf{1}) \rangle}{\langle \mathbf{n} \rangle^2} = \mathbf{1} - \frac{\mathbf{1}}{\langle \mathbf{n} \rangle} + \frac{\Delta n^2}{\langle \mathbf{n} \rangle^2}. \quad (30)$$

The physics behind the power law Particle Number Fluctuations

General system with general reservoir fluctuations

Canonical approach: expansion for small $\omega \ll E$.

$$\left\langle \frac{\Omega_n(E-\omega)}{\Omega_n(E)} \right\rangle = \left\langle e^{S(E-\omega)-S(E)} \right\rangle = \left\langle e^{-\omega S'(E)+\omega^2 S''(E)/2-\dots} \right\rangle$$

$$= 1 - \omega \left\langle S'(E) \right\rangle + \frac{\omega^2}{2} \left\langle S'(E)^2 + S''(E) \right\rangle - \dots$$
(31)

Compare with expansion of Tsallis

$$\left(1+(q-1)\frac{\omega}{T}\right)^{-\frac{1}{q-1}} = 1-\frac{\omega}{T}+q\frac{\omega^2}{2T^2}-\dots$$
 (32)

Interpret the parameters

$$\frac{1}{T} = \langle S'(E) \rangle, \qquad q = 1 - \frac{1}{C} + \frac{\Delta T^2}{T^2}$$
(33)

 $\langle S''(E) \rangle = -1/CT^2$

expressed via the heat capacity of the reservoir, 1/C = dT/dE

The physics behind the power law Particle Number Fluctuations

Understanding the parameter q

in terms fluctuations

Opposite sign contributions from $\langle S'^2 \rangle - \langle S' \rangle^2$ and from $\langle S'' \rangle$. In all cases approximately

$$q=1-rac{1}{C}+rac{\Delta T^2}{T^2}.$$

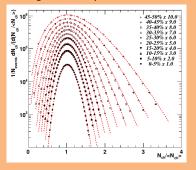
- q > 1 and q < 1 are both possible
- for any relative variance $\Delta T/T = 1/\sqrt{C}$ it is exactly q = 1
- for $nT = E/\dim = \text{const}$ it is $\Delta T/\langle T \rangle = \Delta n/\langle n \rangle$.
- for ideal gas and n distributed as NBD or BD, the Tsallis form is exact

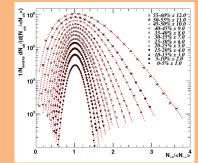
Content

2 Finite Heat Bath and Fluctuation Effects

Experimental NBD distributions PHENIX PRC 78 (2008) 044902

Au + Au collisons at \sqrt{s}_{NN} = 62 (left) and 200 GeV (right). Total charged multiplicities.





 $k \approx 10-20 \quad \rightarrow \quad q \approx 1.05-1.10.$

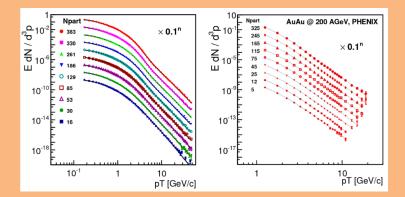
Statistical vs QCD power-law

The experimental fact for hadrons is NBD!

- QCD power-law: size-independent power (k + 1) > 4
- statistical power: $(k + 1) = \langle n \rangle / f \propto$ reservoir size
- consider data fits: k + 1 powers vs N_{part}
- soft and hard power-laws should differ for large N_{part}

Soft and Hard Tsallis fits:

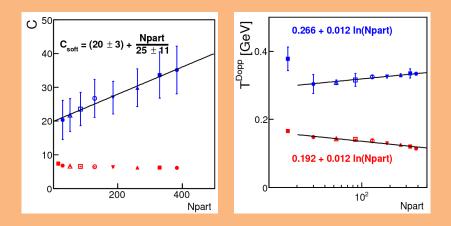
ALICE PLB 720 (2013) 52; PHENIX PRL 101 (2008) 232301



the knick is around $p_T \approx 4 - 5$ GeV.

Hard and Soft Trends with N_{part}

arxiv: 1405.3963

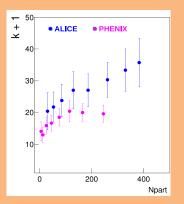


C = k + 1 powers of the power law and fitted *T* parameters (ALICE).

Soft Powers vs N_{part}

arxiv: 1405.3963

Only the soft ("statistical") branches for PHENIX and ALICE:



Summary

- The (measured and calculated) temperature surely fluctuates, but is **not Gaussian**.
- Ideal Gas prefers the Beta or Gamma distribution for T estimators.
- **NBD** particle number fluctuations generate *exact Tsallis* distribution with *q* > 1.

(ロン (同) (見) (見)