On $\eta-\eta^{\prime}$ complex and its temperature dependence ${ }^{\star}$

D. Klabučar ${ }^{a}$ (speaker), D. Horvatić ${ }^{a}$, D. Kekez ${ }^{c}$
$\star 14^{\text {th }}$ Zimány winter school on heavy ion physics
Budapest, Hungary, December 1. - 5. 2014.
${ }^{a}$ Physics Department, University of Zagreb, Croatia
${ }^{b}$ Rudjer Bošković Institute, Zagreb, Croatia

Introducing $\eta-\eta^{\prime}$ complex into pseudoscalar nonet

- Pseudoscalar mesons of light quarks $q=u, d, s$ are (almost) Goldstone bosons of DChSB, so for $m_{u, d, s} \rightarrow 0$ also vanishing meson masses $^{2} M_{u \bar{d}}^{2}=M_{\pi^{+}}^{2}, M_{u \bar{s}}^{2}=M_{K}^{2}, \ldots, \hat{M}_{N A}^{2}=\operatorname{diag}\left(M_{u \bar{u}}^{2}, M_{d \bar{d}}^{2}, M_{s \bar{s}}^{2}\right)$ QCD chiral behavior reproduced correctly by Dyson-Schwinger-Bethe-Salpeter approach (DS) - except anomalously heavy η^{\prime} !
- $|u \bar{d}\rangle=\left|\pi^{+}\right\rangle,|u \bar{s}\rangle=\left|K^{+}\right\rangle, \ldots$ but $|u \bar{u}\rangle,|d \bar{d}\rangle$ and $|s \bar{s}\rangle$ do not correspond to any physical particles (at $T=0$ at least!), although in the isospin limit (adopted from now on) $M_{u \bar{u}}=M_{d \bar{d}}=M_{u \bar{d}}=M_{\pi} . I=$ good Q.no. \Rightarrow recouple into "more physical" $I_{3}=0$ octet-singlet basis

$$
I=1 \quad\left|\pi^{0}\right\rangle=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle-|d \bar{d}\rangle),
$$

but $I=0 \quad\left|\eta_{8}\right\rangle=\frac{1}{\sqrt{6}}(|u \bar{u}\rangle+|d \bar{d}\rangle-2|s \bar{s}\rangle) \approx|\eta\rangle \quad$ mixes with

$$
I=0 \quad\left|\eta_{0}\right\rangle=\frac{1}{\sqrt{3}}(|u \bar{u}\rangle+|d \bar{d}\rangle+|s \bar{s}\rangle) \approx\left|\eta^{\prime}\right\rangle \quad \text { seems too heavy for }
$$

Except $\eta-\eta^{\prime}$, pseudoscalars qualitatively understood at both $T=0$ and $T>0$

- e.g., a simple DS model (so-called 'separable') yields:

- 'Deconfinement' $T_{d, q}$ from S_{q} pole - very different $T_{d, u}, T_{d, s} \ldots$ can be cured/synchronized with $T_{\mathrm{Ch}}\left(=T_{\text {cri }}\right)$ by Polyakov loop
- But what about η and η^{\prime} both at $T=0$ and $T>0$?

Physical η and η^{\prime} must have a diagonal mass matrix

- the "non-anomalous" (chiral-limit-vanishing!) part of the mass-squared matrix of π^{0} and η^{\prime} s is (in $\pi^{0}-\eta_{8}-\eta_{0}$ basis)

$$
\begin{gathered}
\hat{M}_{N A}^{2}=\left(\begin{array}{ccl}
M_{\pi}^{2} & 0 & 0 \\
0 & M_{88}^{2} & M_{80}^{2} \\
0 & M_{08}^{2} & M_{00}^{2}
\end{array}\right) \underset{\mathrm{U}_{\mathrm{A}}(1) \text { problem }}{\Longrightarrow}\left(\begin{array}{ccl}
\text { diagonalization }
\end{array}\left(\begin{array}{ccc}
M_{\pi}^{2} & 0 & 0 \\
0 & M_{\pi}^{2} & 0 \\
0 & 0 & M_{s \bar{s}}^{2}
\end{array}\right)\right. \\
M_{88}^{2} \equiv\left\langle\eta_{8}\right| \hat{M}_{N A}^{2}\left|\eta_{8}\right\rangle=\frac{2}{3}\left(M_{s \bar{s}}^{2}+\frac{1}{2} M_{\pi}^{2}\right), \quad M_{00}^{2} \equiv\left\langle\eta_{0}\right| \hat{M}_{N A}^{2}\left|\eta_{0}\right\rangle=\frac{2}{3}\left(\frac{1}{2} M_{s \bar{s}}^{2}+M_{\pi}^{2}\right), \\
M_{80}^{2} \equiv\left\langle\eta_{8}\right| \hat{M}_{N A}^{2}\left|\eta_{0}\right\rangle=M_{08}^{2}=\frac{\sqrt{2}}{3}\left(M_{\pi}^{2}-M_{s \bar{s}}^{2}\right)
\end{gathered}
$$

- What reproduces $M_{\pi} \& M_{K}$ cannot also $M_{\eta}=548 \& M_{\eta^{\prime}}=958 \mathrm{MeV}$!
- $\hat{M}_{N A}^{2}$ not enough! To avoid the $\mathrm{U}_{A}(1)$ problem, one must break the $\mathrm{U}_{A}(1)$ symmetry (as it is destroyed by the gluon anomaly) at least at the level of the masses.

Why $\eta_{0} \approx \eta^{\prime}$ has an anomalous piece of mass:

$U_{A}(1)$ symmetry is broken by nonabelian ("gluon") axial anomaly: even in the chiral limit (ChLim, where $m_{q} \rightarrow 0$),

$$
\partial_{\alpha} \bar{\psi}(x) \gamma^{\alpha} \gamma_{5} \frac{\lambda^{0}}{2} \psi(x) \propto F^{a}(x) \cdot \widetilde{F}^{a}(x) \equiv \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu}^{a}(x) F_{\rho \sigma}^{a}(x) \neq 0 .
$$

This breaks the $U_{A}(1)$ symmetry of QCD and precludes the $9^{\text {th }}$ Goldstone pseudoscalar meson \Rightarrow very massive η^{\prime} : even in ChLim, where $m_{\pi}, m_{K}, m_{\eta} \rightarrow 0$, still ('ChLim WVR')

$$
0 \neq \Delta M_{\eta_{0}}^{2}=\Delta M_{\eta^{\prime}}^{2}=\frac{(A=\text { qty.dim.mass })^{4}}{\left(" f_{\eta^{\prime}} "\right)^{2}}=\frac{6 \chi \mathrm{YM}}{f_{\pi}^{2}}+O\left(\frac{1}{N_{c}}\right)
$$

Out of ChLim : $\quad M_{\eta^{\prime}}{ }^{2}+M_{\eta}{ }^{2}-2 M_{K}{ }^{2}=\frac{2 N_{f}}{f_{\pi}^{2}} \chi_{\mathrm{YM}} \quad\left(+O\left(\frac{1}{N_{c}}\right)\right)$

Anomalous part of η_{0} mass: $\Delta M_{\eta_{0}}^{2}=\chi_{\mathrm{YM}} \frac{2 N_{f}}{f_{\pi}^{2}}+O\left(\frac{1}{N_{c}}\right)$

QCD chiral behavior (reproduced by DS approach) of the non-anomalous parts of masses of light $q \bar{q}^{\prime}$ pseudoscalars (i.e., all parts except $\left.\Delta M_{\eta_{0}}\right): M_{q \bar{q}^{\prime}}^{2}=\operatorname{const}\left(m_{q}+m_{q^{\prime}}\right), \quad\left(q, q^{\prime}=u, d, s\right)$. \Rightarrow non-anomalous parts of the masses in WVR cancel: $M_{\eta^{\prime}}{ }^{2}+M_{\eta}{ }^{2}-2 M_{K}{ }^{2} \approx \Delta M_{\eta_{0}}{ }^{2}, \quad$ approx. as in ChLim WVR
$\chi=\int d^{4} x\langle 0| Q(x) Q(0)|0\rangle, \quad Q(x)=\frac{g^{2}}{64 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} F_{\mu \nu}^{a}(x) F_{\rho \sigma}^{a}(x)$

- $Q(x)=$ topological charge density operator
- In WV rel., χ is the pure-glue, YM one, $\chi_{\mathrm{YM}} \leftrightarrow \chi_{\text {quench }}$.

Lattice: good χ_{YM}, subtleties with χ of light-flavor QCD [Bernard et al.,
JHEP 1206 (2012) 051] where $\quad \chi=-\frac{\langle\bar{q} q\rangle_{0}}{\sum_{q=u, d, s} \frac{1}{m_{q}}}+\mathcal{C}($ higher \mathcal{O} in $m)$.

Gluon anomaly is not accessible to ladder approximation

- All masses in $\hat{M}_{N A}^{2}$ are calculated in the ladder approx., which cannot include the gluon anomaly contributions.
- Large N_{c} : the gluon anomaly suppressed as $1 / N_{c}$! \rightarrow Include its effect just at the level of masses: break the $U_{A}(1)$ symmetry and avoid the $U_{A}(1)$ problem by shifting the η_{0} (squared) mass by anomalous contribution 3β.
- complete mass matrix is then $\hat{M}^{2}=\hat{M}_{N A}^{2}+\hat{M}_{A}^{2}$ where

$$
\hat{M}_{A}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3 \beta
\end{array}\right) \quad \text { does not vanish in the chiral limit. }
$$

$3 \beta=\Delta M_{\eta_{0}}^{2}=$ the anomalous mass ${ }^{2}$ of η_{0} [in $\mathrm{SU}(3)$ limit incl. ChLim] is related to the YM topological susceptibility. Fixed by phenomenology or (here) taken from the lattice.

Transitions related to the $U_{A}(1)$ anomaly

- Transitions between hidden flavors $|q \bar{q}\rangle \rightarrow\left|q^{\prime} \bar{q}^{\prime}\right\rangle$ ($q, q^{\prime}=u, d, s$)

- Diamond graph: just the simplest example of a transition $|q \bar{q}\rangle \rightarrow\left|q^{\prime} \bar{q}^{\prime}\right\rangle$ ($q, q^{\prime}=u, d, s$), contributing to the anomalous masses in the $\eta-\eta^{\prime}$ complex, but not included in the interaction kernel in the ladder approximation.

Anomalous mass matrix in $q \bar{q}$ and octet-singlet bases

- we can also rewrite \hat{M}_{A}^{2} in the $q \bar{q}$ basis $|u \bar{u}\rangle,|d \bar{d}\rangle,|s \bar{s}\rangle$

$$
\hat{M}_{A}^{2}=\beta\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \underset{\text { brakking }}{\xrightarrow[\text { flavor }]{\longrightarrow}} \hat{M}_{A}^{2}=\beta\left(\begin{array}{ccc}
1 & 1 & X \\
1 & 1 & X \\
X & X & X^{2}
\end{array}\right)
$$

- We introduced the effects of the flavor breaking on the anomaly-induced transitions $|q \bar{q}\rangle \rightarrow\left|q^{\prime} \bar{q}^{\prime}\right\rangle\left(q, q^{\prime}=u, d, s\right)$. $s \bar{s}$ transition suppression estimated by $X \approx f_{\pi} / f_{s \bar{s}}$.
- Then, \hat{M}_{A}^{2} in the octet-singlet basis is modified to

$$
\hat{M}_{A}^{2}=\beta\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{2}{3}(1-X)^{2} & \frac{\sqrt{2}}{3}\left(2-X-X^{2}\right) \\
0 & \frac{\sqrt{2}}{3}\left(2-X-X^{2}\right) & \frac{1}{3}(2+X)^{2}
\end{array}\right)
$$

- \rightarrow In the isospin limit, one can always restrict to 2×2 submatrix of etas $(I=0)$, as $\pi^{0}(I=1)$ is decoupled then.

Anomalous mass matrix and mixing in $N S-S$ basis

- nonstrange (NS) - strange (S) basis

$$
\begin{aligned}
\left|\eta_{N S}\right\rangle & \left.=\frac{1}{\sqrt{2}}(|u \bar{u}\rangle+|d \bar{d}\rangle)=\frac{1}{\sqrt{3}}\left|\eta_{8}\right\rangle+\sqrt{\frac{2}{3}} \eta_{0}\right\rangle, \\
\left|\eta_{S}\right\rangle & =|s \bar{s}\rangle=-\sqrt{\frac{2}{3}}\left|\eta_{\rangle}\right\rangle+\frac{1}{\sqrt{3}}\left|\eta_{0}\right\rangle .
\end{aligned}
$$

- the $\eta-\eta^{\prime}$ mass matrix in this basis is

$$
\hat{M}^{2}=\left(\begin{array}{ll}
M_{\eta_{N S}^{2}}^{2} & M_{\eta_{S \eta_{N S}}^{2}}^{M_{\eta N S n_{S}}^{2}}
\end{array} M_{\eta S}^{2},\left(\begin{array}{cc}
M_{u \bar{u}}^{2}+2 \beta & \sqrt{2} \beta X \\
\sqrt{2} \beta X & M_{s \bar{\delta}}^{2}+\beta X^{2}
\end{array}\right) \oplus\left(\begin{array}{cc}
M_{\eta}^{2} & 0 \\
0 & M_{\eta^{\prime}}^{2}
\end{array}\right)\right.
$$

- NS-S mixing relations - states rotation diagonalizing \hat{M}^{2} :

$$
\begin{gathered}
|\eta\rangle=\cos \phi\left|\eta_{N S}\right\rangle-\sin \phi\left|\eta_{S}\right\rangle, \quad\left|\eta^{\prime}\right\rangle=\sin \phi\left|\eta_{N S}\right\rangle+\cos \phi\left|\eta_{S}\right\rangle . \\
\theta=\phi-\arctan \sqrt{2}
\end{gathered}
$$

Finally, fix anomalous contribution to $\eta-\eta^{\prime}$:

- Equal traces of diagonalized \& non-diagnlz. \hat{M}^{2} demand $1^{\text {st }}$ eqality in

$$
\beta\left(2+X^{2}\right)=M_{\eta}^{2}+M_{\eta^{\prime}}^{2}-2 M_{K}^{2}=\frac{2 N_{f}}{f_{\pi}^{2}} \chi_{\mathrm{YM}} \quad\left(2^{\mathrm{nd}} \text { equality }=\mathrm{WV}\right. \text { rel }
$$

- requiring that the experimental trace $\left(M_{\eta}^{2}+M_{\eta^{\prime}}^{2}\right)_{\text {exp }}$ $\approx 1.22 \mathrm{GeV}^{2}$ be reproduced by the theoretical \hat{M}^{2}, yields $\beta_{\mathrm{fit}}=\frac{1}{2+X^{2}}\left[\left(M_{\eta}^{2}+M_{\eta^{\prime}}^{2}\right)_{\exp }-\left(M_{u \bar{u}}^{2}+M_{s \bar{s}}^{2}\right)\right]$
- Or, get β from lattice χ_{YM} ! Then no free parameters!
- then, can calculate the $N S-S$ mixing angle ϕ

$$
\begin{gathered}
\tan 2 \phi=\frac{2 M_{\eta_{S} \eta_{N S}}^{2}}{M_{\eta_{S}}-M_{\eta_{N S}}^{2}}=\frac{2 \sqrt{2} \beta X}{M_{\eta_{S}}^{2}-M_{\eta_{N S}}^{2}} \quad \text { and } \\
M_{\eta_{N S}}^{2}=M_{u \bar{u}}^{2}+2 \beta=M_{\pi}^{2}+2 \beta, \quad M_{\eta_{S}}^{2}=M_{s \bar{s}}^{2}+\beta X^{2}=M_{s \bar{s}}^{2}+\beta \frac{f_{\pi}^{2}}{f_{s \bar{s}}^{2}}
\end{gathered}
$$

Physical η, η^{\prime} eigenmasses - of the two-level type:

- The diagonalization of the $N S-S$ mass matrix then finally gives us the calculated η and η^{\prime} masses:

$$
\begin{aligned}
M_{\eta}^{2} & =\cos ^{2} \phi M_{\eta_{N S}}^{2}-M_{\eta_{S} \eta_{N S}}^{2} \sin 2 \phi+\sin ^{2} \phi M_{\eta_{S}}^{2} \quad\left(\text { note } M_{\eta_{S} \eta_{N S}}^{2}=\sqrt{2} \beta\right) \\
M_{\eta^{\prime}}^{2} & =\sin ^{2} \phi M_{\eta_{N S}}^{2}+M_{\eta_{S} \eta_{N S}}^{2} \sin 2 \phi+\cos ^{2} \phi M_{\eta_{S}}^{2}
\end{aligned}
$$

- Equivalently, secular determinant \Rightarrow the eigenvalues of 2×2 matrix:

$$
\begin{aligned}
M_{\eta}^{2} & =\frac{1}{2}\left[M_{\eta_{N S}}^{2}+M_{\eta_{S}}^{2}-\sqrt{\left(M_{\eta_{N S}}^{2}-M_{\eta_{S}}^{2}\right)^{2}+4 M_{\eta_{S} \eta_{N S}}^{4}}\right] \\
& =\frac{1}{2}\left[M_{\pi}^{2}+M_{s \bar{s}}^{2}+\beta\left(2+X^{2}\right)-\sqrt{\left(M_{\pi}^{2}+2 \beta-M_{s \bar{s}}^{2}-\beta X^{2}\right)^{2}+8 \beta^{2} X^{2}}\right] \\
M_{\eta^{\prime}}^{2} & =\frac{1}{2}\left[M_{\eta_{N S}}^{2}+M_{\eta_{S}}^{2}+\sqrt{\left(M_{\eta_{N S}}^{2}-M_{\eta_{S}}^{2}\right)^{2}+4 M_{\eta_{S} \eta_{N S}}^{4}}\right] \\
& =\frac{1}{2}\left[M_{\pi}^{2}+M_{s \bar{s}}^{2}+\beta\left(2+X^{2}\right)+\sqrt{\left(M_{\pi}^{2}+2 \beta-M_{s \bar{s}}^{2}-\beta X^{2}\right)^{2}+8 \beta^{2} X^{2}}\right]
\end{aligned}
$$

Separable model results on η and η^{\prime} at $T=0$

	$\beta_{\text {fit }}$	$\beta_{\text {latt. }}$	Exp.
θ	-12.22°	-13.92°	
$M_{\eta}[\mathrm{MeV}]$	548.9	543.1	547.75
$M_{\eta^{\prime}}[\mathrm{MeV}]$	958.5	932.5	957.78
X	0.772	0.772	
$3 \beta\left[\mathrm{GeV}^{2}\right]$	0.845	0.781	

- $X=f_{\pi} / f_{s \bar{s}}$ as well as the whole $\hat{M}_{N A}^{2}$ (consisting of M_{π} and $M_{s \bar{s}}$) are calculated model quantities.
- $\beta_{\text {latt. }}$ was obtained from $\chi_{\mathrm{YM}}(T=0)=(175.7 \mathrm{MeV})^{4}$
- But is an extension to high T possible, as there is a large mismatch of characteristic temperature scales of the pure-gauge $\mathrm{YM}\left(T_{c} \sim 270\right.$ MeV) vs. full QCD ($T_{c} \sim 160 \mathrm{MeV}$) with quarks?
- Concretely in WVR, $\chi_{\text {Yм }}$ is more T-resistant than QCD quantities $M_{\eta, \eta^{\prime}, K}$ and f_{π}. Does WVR become unusable as T approaches the (pseudo-)critical temperatures of full QCD, such as $T \sim T_{\mathrm{Ch}}$?

Solution: another relation connecting YM and QCD

Early work by Di Vecchia \& Veneziano ... Leutwyler \& Smilga [Phys. Rev. D46 (1992) 5607] derived, up to $O\left(\frac{1}{N_{c}}\right)$,

$$
(\operatorname{at} T=0), \quad \chi_{\mathrm{YM}}=\frac{\chi}{1+\chi \frac{N_{f}}{m\langle\bar{q} q\rangle_{0}}} \equiv \widetilde{\chi}
$$

\Rightarrow relates χ_{YM} to the full-QCD topological susceptibility χ, chiral condensate $\langle\bar{q} q\rangle_{0}$ and $m \equiv N_{f} \times$ the reduced mass.
Presently $N_{f}=3$, i.e., $N_{f} / m=\sum_{q=u, d, s}\left(1 / m_{q}\right)$.

- in the limit of very heavy quarks, $m_{q}, m \rightarrow \infty$, it confirms expectations that $\chi_{\mathrm{YM}}=$ value of topolog. susceptibility in quenched QCD,$\quad \chi_{\mathrm{YM}}=\chi\left(m_{q}=\infty\right)$
- It shows

$$
\chi \leq \min \left(-m\langle\bar{q} q\rangle_{0} / N_{f}, \chi_{\mathrm{YM}}\right)
$$

LS relation also holds in the oposite limit!

In the (presently pertinent!) regime of light quarks there is Di Vecchia-Veneziano result for small m_{q} :

$$
\chi=-\frac{m\langle\bar{q} q\rangle_{0}}{N_{f}}+\mathcal{C}(m)
$$

- $\mathcal{C}(m)=$ small corrections of higher orders in small m_{q}, \ldots but $\mathcal{C}(m)$ should not be neglected, since $\mathcal{C}(m)=0$ would imply that $\chi_{\mathrm{YM}}=\infty$.
- LS relation fixes the value of the correction at $T=0$:

$$
\frac{1}{\mathcal{C}(m)}=\frac{N_{f}}{m\langle\bar{q} q\rangle_{0}}-\chi_{\mathrm{YM}}(0)\left(\frac{N_{f}}{m\langle\bar{q} q\rangle_{0}}\right)^{2} .
$$

T-dependence of $\widetilde{\chi}$

- LS relation also must break down as T approaches the (pseudo-)critical temperatures of full QCD ($\sim T_{\text {Ch }}$) since YM quantity χ_{YM}, is much more T-resistant than $\widetilde{\chi}$.
- $\tilde{\chi}$ consists of the full-QCD quantities χ and $\langle\bar{q} q\rangle_{0}$, characterized by $T_{\text {Ch }}$, just as $f_{\pi}(T)$.
- Thus, the troublesome mismatch in T-dependences of $f_{\pi}(T)$ and the pure-gauge $\chi_{\mathrm{YM}}(T)$ is expected to disappear if $\chi_{\mathrm{YM}}(T)$ is replaced by $\widetilde{\chi}(T)$, the T-extended RHS of LS relation
- The usual, successful zero-T WV relation is thereby retained, since $\quad \chi_{\mathrm{YM}}=\widetilde{\chi} \quad$ at $T=0$.

T-dependence of χ and $\widetilde{\chi}$

- Extending the light-quark full-QCD topol. susceptibility χ is somewhat uncertain, as there is no guidance from lattice [unlike for $\chi_{\mathrm{YM}}(T)$].
- The leading term in Di Vecchia-Veneziano relation $\propto\langle\bar{q} q\rangle_{0}(T)$ very plausibly, but for the correction term we have to explore a range of Ansätze, i.e.,

$$
\chi(T)=-\frac{m\langle\bar{q} q\rangle_{0}(T)}{N_{f}}+\mathcal{C}(m)\left[\frac{\langle\bar{q} q\rangle_{0}(T)}{\langle\bar{q} q\rangle_{0}(T=0)}\right]^{\delta}, \quad(0 \leq \delta<2) .
$$

Then, $\quad \widetilde{\chi}(T)=$
$=\frac{\langle\bar{q} q\rangle_{0}(T)}{\sum_{q=u, d, s}\left(\frac{1}{m_{q}}\right)}\left\{1-\frac{\langle\bar{q} q\rangle_{0}(T)}{\sum_{q=u, d, s}\left(\frac{1}{m_{q}}\right)} \frac{1}{\mathcal{C}(m)}\left[\frac{\langle\bar{q} q\rangle_{0}(T=0)}{\langle\bar{q} q\rangle_{0}(T)}\right]^{\delta}\right\}$.

Chiral condensate $\langle q \bar{q}\rangle_{0}(T)$ and resulting $\widetilde{\chi}(T)$

Case 1: T-independent correction term in χ

[Benić, Horvatić, Kekez and Klabučar, Phys. Rev. D 84 (2011) 016006.]

$\mathrm{T} / T_{\mathrm{cb}}$

Case 2: Strongly T-dependent correction term $\propto\langle\bar{q} q\rangle_{0}(T)$

$$
\chi_{\mathrm{YM}}=(0.1757 \mathrm{GeV})^{4}, \delta=1
$$

Recapitulation of so far, \& what follows

- Leutwyler-Smilga and Di Vecchia-Veneziano relations 1.) enable one to retain unchanged WV relation, with χ_{YM}, for $T=0$ (in fact, any T sufficiently below T_{Ch}) and 2.) to replace the T-dependence of χ_{YM} by that of $\tilde{\chi}$ which is essentialy that of the chiral condensate. This provides an explanation for the η^{\prime} mass drop and thus for the data on increased η^{\prime} multiplicities, and indicates how chiral restoration may be linked with the $U_{A}(1)$ one.
- We shall show our exact solutions to Shore's generalization of WVR support the above

Shore's generalization of WV valid to all orders in $1 / N_{c}$

- WV rel. - lowest order in $1 / N_{c}$ - improved like this:

$$
\begin{gather*}
\left(f_{\eta^{\prime}}^{0}\right)^{2} M_{\eta^{\prime}}^{2}+\left(f_{\eta}^{0}\right)^{2} M_{\eta}^{2}=\frac{1}{3}\left(f_{\pi}^{2} M_{\pi}^{2}+2 f_{K}^{2} M_{K}^{2}\right)+6 A \tag{1}\\
f_{\eta^{\prime}}^{0} f_{\eta^{\prime}}^{8} M_{\eta^{\prime}}^{2}+f_{\eta}^{0} f_{\eta}^{8} M_{\eta}^{2}=\frac{2 \sqrt{2}}{3}\left(f_{\pi}^{2} M_{\pi}^{2}-f_{K}^{2} M_{K}^{2}\right) \tag{2}\\
\left(f_{\eta^{\prime}}^{8}\right)^{2} M_{\eta^{\prime}}^{2}+\left(f_{\eta}^{8}\right)^{2} M_{\eta}^{2}=-\frac{1}{3}\left(f_{\pi}^{2} M_{\pi}^{2}-4 f_{K}^{2} M_{K}^{2}\right) \tag{3}
\end{gather*}
$$

A is the full QCD topological charge parameter

$$
\begin{equation*}
A=\frac{\chi}{1+\chi\left(\frac{1}{\langle\bar{u} u\rangle m_{u}}+\frac{1}{\left\langle\overline{d d\rangle} m_{d}\right.}+\frac{1}{\langle\overline{s s}\rangle m_{s}}\right)} \tag{4}
\end{equation*}
$$

= hard to calculate on lattice ...
However, it is known that $\quad A=\chi_{\mathrm{YM}}+\mathcal{O}\left(\frac{1}{N_{c}}\right)$

Reduction to the standard WV relation (= large N_{c} result)

Replacement 3 different condensates $\rightarrow\langle\bar{q} q\rangle_{0}$ reduces the full QCD topological charge A (4) to the combination $\widetilde{\chi}$ on the RHS of Leutwyler-Smilga relation (lowest $\mathcal{O}\left(\frac{1}{N_{c}}\right)$):

$$
\chi_{\mathrm{YM}}=\frac{\chi}{1+\frac{\chi}{\langle\bar{q} q\rangle_{0}} \sum_{q=u, d, s} \frac{1}{m_{q}}} \rightarrow \widetilde{\chi}(T, \mu)=\frac{\langle\bar{q} q(T, \mu)\rangle_{0}}{\sum_{q=u, d, s} \frac{1}{m_{q}}}+\text { corr }^{\prime} s \approx A(T
$$

Previously, we only conjectured $\chi_{\mathrm{YM}}(T) \rightarrow \widetilde{\chi}(T)$ [Benić et al, Phys. Rev. D84 (2011) 016006] , to explain increased η^{\prime} multiplicity at RHIC noted by Csörgő et al. Also note (1)+(3) \Rightarrow

$$
\left(f_{\eta^{\prime}}^{0}\right)^{2} M_{\eta^{\prime}}^{2}+\left(f_{\eta}^{0}\right)^{2} M_{\eta}^{2}+\left(f_{\eta}^{8}\right)^{2} M_{\eta}^{2}+\left(f_{\eta^{\prime}}^{8}\right)^{2} M_{\eta^{\prime}}^{2}-2 f_{K}^{2} M_{K}^{2}=6 A
$$

- Then, large N_{c} limit and 'off-diagonal' $f_{\eta}^{0}, f_{\eta^{\prime}}^{8} \rightarrow 0$, as well as $f_{\eta^{\prime}}^{0}, f_{\eta}^{8}, f_{K} \rightarrow f_{\pi}$, recovers the standard WV.

η^{\prime} and η have 4 independent decay constants

$f_{\eta^{\prime}}^{0}, f_{\eta}^{8}, f_{\eta}^{0}, f_{\eta^{\prime}}^{8}: \quad\langle 0| A^{a \mu}(x)|P(p)\rangle=i f_{P}^{a} p^{\mu} e^{-i p \cdot x}, \quad a=8,0 ; \quad P=\eta, \eta^{\prime}$

- Equivalently, one has 4 related but different constants $f_{\eta^{\prime}}^{N, S}, f_{\eta}^{N S}, f_{\eta}^{S}, f_{\eta^{\prime}}^{S}$ if instead of octet and singlet axial currents $(a=8,0)$ one takes this matrix element of the nonstrange-strange axial currents ($a=N S, S$)

$$
\begin{gathered}
A_{N S}^{\mu}(x)=\frac{1}{\sqrt{3}} A^{8 \mu}(x)+\sqrt{\frac{2}{3}} A^{0 \mu}(x)=\frac{1}{2}\left(\bar{u}(x) \gamma^{\mu} \gamma_{5} u(x)+\bar{d}(x) \gamma^{\mu} \gamma_{5} d(x)\right), \\
A_{S}^{\mu}(x)=-\sqrt{\frac{2}{3}} A^{8 \mu}(x)+\frac{1}{\sqrt{3}} A^{0 \mu}(x)=\frac{1}{\sqrt{2}} \bar{s}(x) \gamma^{\mu} \gamma_{5} s(x), \\
{\left[\begin{array}{cc}
f_{\eta}^{N S} & f_{\eta}^{S} \\
f_{\eta^{\prime}}^{N, S} & f_{\eta^{\prime}}^{S}
\end{array}\right]=\left[\begin{array}{cc}
f_{\eta}^{8} & f_{\eta}^{0} \\
f_{\eta^{\prime}}^{8} & f_{\eta^{\prime}}^{0}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & -\sqrt{\frac{2}{3}} \\
\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}}
\end{array}\right],} \\
a, P=N S, S: \quad\langle 0| A_{N S}^{\mu}(x)\left|\eta_{N S}(p)\right\rangle=i f_{N S} p^{\mu} e^{-i p \cdot x}, \quad\langle 0| A_{N S}^{\mu}(x)\left|\eta_{S}(p)\right\rangle=0, \\
a, P=N S, S: \quad\langle 0| A_{S}^{\mu}(x)\left|\eta_{S}(p)\right\rangle=i f_{S} p^{\mu} e^{-i p \cdot x}, \quad\langle 0| A_{S}^{\mu}(x)\left|\eta_{N S}(p)\right\rangle=0,
\end{gathered}
$$

- Note: in a DS approach, $f_{N S}=f_{u \bar{u}}=f_{d \bar{d}}=f_{\pi}, f_{S}=f_{s \bar{s}}$ are calculated quantities

Two Mixing Angles and FKS one-angle scheme

- Any $4 \eta-\eta^{\prime}$ decay constants conveniently parametrized in terms of two decay constants and two angles:

$$
\begin{array}{lll}
f_{\eta}^{8}=\cos \theta_{8} f_{8}, & f_{\eta}^{0}=-\sin \theta_{0} f_{0}, & f_{\eta}^{N S}=\cos \phi_{N S} f_{N S}, \\
f_{\eta^{\prime}}^{8}=\sin \theta_{8} f_{8}, & f_{\eta}^{0}=\cos \theta_{0} f_{0}, & f_{\eta^{\prime}}^{N S}=\sin \phi_{S} f_{S}, \\
\phi_{N S} f_{N S}, & f_{\eta^{\prime}}^{S}=\cos \phi_{S} f_{S}
\end{array}
$$

- Big practical difference between 0-8 and NS-S schemes:
- while θ_{8} and θ_{0} differ a lot from each other and from $\theta \approx\left(\theta_{8}+\theta_{0}\right) / 2, \quad$ FKS showed that $\quad \phi_{N S} \approx \phi_{S} \approx \phi$.

$$
\left[\begin{array}{ll}
f_{\eta}^{N S} & f_{\eta}^{S} \\
f_{\eta^{\prime}}^{N S} & f_{\eta^{\prime}}^{S}
\end{array}\right]=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{cc}
f_{N S} & 0 \\
0 & f_{S}
\end{array}\right] .
$$

For four decay constants, can use FKS one-angle scheme!

- ϕ relates $\left\{f_{\eta}^{8}, f_{\eta^{\prime}}^{8}, f_{\eta}^{0}, f_{\eta^{\prime}}^{0}\right\}$ with $\left\{f_{N S}, f_{S}\right\}=\left\{f_{\pi}, f_{s \bar{s}}\right\}$:

$$
\left[\begin{array}{cc}
f_{\eta}^{8} & f_{\eta}^{0} \\
f_{\eta^{\prime}}^{8} & f_{\eta^{\prime}}^{0}
\end{array}\right]=\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{cc}
f_{N S} & 0 \\
0 & f_{S}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{3}} & \sqrt{\frac{2}{3}} \\
-\sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]
$$

- Some other useful relations between quantities of $N S-S$ (FKS) and 0-8 schemes:

$$
\begin{array}{ll}
f_{8}=\sqrt{\frac{1}{3} f_{N S}^{2}+\frac{2}{3} f_{S}^{2}}, & \theta_{8}=\phi-\arctan \left(\frac{\sqrt{2} f_{S}}{f_{N S}}\right), \\
f_{0}=\sqrt{\frac{2}{3} f_{N S}^{2}+\frac{1}{3} f_{S}^{2}}, & \theta_{0}=\phi-\arctan \left(\frac{\sqrt{2} f_{N S}}{f_{S}}\right) .
\end{array}
$$

Solve numerically Shore's Eqs. (1)-(3) for $M_{\eta^{\prime}}, M_{\eta}$, and ϕ :

Inputs:	$M_{\pi}, M_{K}, f_{\pi}=f_{\mathrm{NS}}, f_{s \bar{s}}=f_{\mathrm{S}}$ and f_{K}, calculated in 3 different DS models					
χ_{YM}	191^{4}	175.7^{4}	191^{4}	175.7^{4}	191^{4}	175.7^{4}
M_{η}	499.8	485.7	496.7	482.8	526.2	507.0
$M_{\eta^{\prime}}$	931.4	815.8	934.9	818.4	983.2	868.7
ϕ	52.01°	46.11°	51.85°	46.07°	47.23°	40.86°
θ	-2.72°	-8.62°	-2.89°	-8.67°	-7.51°	-13.87°
θ_{0}	7.74°	1.84°	7.17°	1.39°	-0.33°	-6.69°
θ_{8}	-12.00°	-17.90°	-11.85°	-17.6°	-14.12°	-20.47°
f_{0}	108.8	108.8	107.9	107.9	101.8	101.8
f_{8}	122.6	122.6	121.1	121.1	110.7	110.7
f_{η}^{0}	-14.7	-3.5	-13.5	-2.6	0.6	11.9
$f_{\eta^{\prime}}^{0}$	107.9	108.8	107.1	107.9	101.8	101.1
f_{η}^{8}	119.9	116.7	118.5	115.4	107.4	103.7
$f_{\eta^{\prime}}^{8}$	-25.5	-37.7	-2.49	-37.6	-27.0	-38.7

(in D. Horvatić et al., Eur. Phys. J. A 38 (2008) 257.) $M_{\eta, \eta^{\prime}}$ and $f^{\prime} \mathrm{s}$ in MeV, χ_{YM} is in MeV^{4}.

The same is now reproduced analytically:

- Eqs. (1)-(3) \Rightarrow two closed-form solutions for $M_{\eta}, M_{\eta^{\prime}}$ and $\tan \phi$ in terms of $f_{\pi}, f_{s \bar{s}}, M_{\pi}, M_{K}$ and A. The set reproducing the previous numerical results is:

$$
\begin{aligned}
\tan \phi & =\frac{-2 A f_{\pi}^{2}+4 A f_{s \bar{s}}^{2}-2 f_{K}^{2} f_{\pi}^{2} M_{K}^{2}+f_{\pi}^{4} M_{\pi}^{2}+f_{\pi}^{2} f_{s \bar{s}}^{2} M_{\pi}^{2}+\Delta}{4 \sqrt{2} A f_{\pi} f_{s \bar{s}}} \\
M_{\eta, \eta^{\prime}}^{2} & =\frac{2 A f_{\pi}^{2}+4 A f_{s \bar{s}}^{2}+2 f_{K}^{2} f_{\pi}^{2} M_{K}^{2}-f_{\pi}^{4} M_{\pi}^{2}+f_{\pi}^{2} f_{s \bar{s}}^{2} M_{\pi}^{2} \mp \Delta}{2 f_{\pi}^{2} f_{s \bar{s}}^{2}}
\end{aligned}
$$

where $\quad \Delta^{2}=$

$$
32 A^{2} f_{\pi}^{2} f_{s \bar{s}}^{2}+\left\{2 A\left(f_{\pi}^{2}-2 f_{s \bar{s}}^{2}\right)+f_{\pi}^{2}\left[2 f_{K}^{2} M_{K}^{2}-\left(f_{\pi}^{2}+f_{s \bar{s}}^{2}\right) M_{\pi}^{2}\right]\right\}^{2}
$$

[Benić, Horvatić, Kekez \& Klabučar, Phys. Lett. B738 (2014) 113]

Find matrix elem's in $N S-S$ basis from these $M_{\eta}, M_{\eta^{\prime}}, \phi$:

$$
\begin{aligned}
M_{\eta_{N S}}^{2} \equiv M_{\mathrm{NS}}^{2} & =\cos ^{2} \phi M_{\eta}^{2}+\sin ^{2} \phi M_{\eta^{\prime}}^{2} \\
M_{\eta_{S}}^{2} \equiv M_{\mathrm{S}}^{2} & =\sin ^{2} \phi M_{\eta}^{2}+\cos ^{2} \phi M_{\eta^{\prime}}^{2} \\
M_{\eta_{N S} \eta_{S}}^{2} \equiv M_{\mathrm{NSS}}^{2} & =\sin \phi \cos \phi\left(M_{\eta}^{2}-M_{\eta^{\prime}}^{2}\right)
\end{aligned}
$$

to use $\quad M_{\eta, \eta^{\prime}}^{2}=\frac{1}{2}\left[M_{\text {NS }}^{2}+M_{\mathrm{S}}^{2} \mp \sqrt{\left(M_{\mathrm{NS}}^{2}-M_{\mathrm{S}}^{2}\right)^{2}+4 M_{\mathrm{NSS}}^{4}}\right]$
Mathematica leads to surprisingly simple results:

$$
\begin{gathered}
M_{\mathrm{NS}}^{2}=M_{\pi}^{2}+\frac{4 A}{f_{\pi}^{2}}, \quad M_{\mathrm{NSS}}^{2}=\frac{2 \sqrt{2} A}{f_{\pi} f_{s \bar{s}}} \\
M_{\mathrm{S}}^{2}=\frac{1}{f_{s \bar{s}}^{2}}\left[2 f_{K}^{2} M_{K}^{2}-f_{\pi}^{2} M_{\pi}^{2}\right]+\frac{2 A}{f_{s \bar{s}}^{2}}=M_{s \bar{s}}^{2}+\frac{2 A}{f_{s \bar{s}}^{2}} \\
f_{\pi}^{2} M_{\pi}^{2}=-m_{u}\langle u \bar{u}\rangle-m_{d}\langle d \bar{d}\rangle \quad \text { and } f_{K}^{2} M_{K}^{2}=-m_{u}\langle u \bar{u}\rangle-m_{s}\langle s \bar{s}\rangle \\
\Rightarrow \quad 2 f_{K}^{2} M_{K}^{2}-f_{\pi}^{2} M_{\pi}^{2}=f_{s \bar{s}}^{2} M_{s \bar{s}}^{2} \quad \text { "eq. (23)" }
\end{gathered}
$$

Compare $M_{\mathrm{NS}}, M_{\mathrm{NSS}}$ and M_{S} with NS-S mass matrix:

$$
\left[\begin{array}{cc}
M_{\mathrm{NS}}^{2} & M_{\mathrm{NSS}}^{2} \\
M_{\mathrm{NSS}}^{2} & M_{\mathrm{S}}^{2}
\end{array}\right]=\left[\begin{array}{cc}
M_{\pi}^{2}+2 \beta & \sqrt{2} \beta X \\
\sqrt{2} \beta X & M_{s \bar{s}}^{2}+\beta X^{2}
\end{array}\right]
$$

\Rightarrow Very similar formulas in WV case and "Shore case":

$$
\text { 1.) } \quad \beta_{\mathrm{WV}}=\frac{6 \chi_{Y M}}{f_{\pi}^{2}\left(2+X^{2}\right)}, \quad \beta_{\mathrm{Shore}+\mathrm{FKS}}=\frac{2 A}{f_{\pi}^{2}} \approx \frac{2 \chi_{Y M}}{f_{\pi}^{2}}
$$

Explains why Shore's scheme needs higher values of $\chi_{Y M}$ than WV, to approach empirical masses.
2.) $X=\frac{f_{\pi}}{f_{\mathrm{ss}}}$ the SAME in the both WV and Shore cases ...
... but in the "Shore case", it follows from equations! Before, incl. WV, it was an input - estimate, educated guess.

Extending Shore + FKS scheme to $T>0$

Presently, all results of the Shore + FKS scheme at $T>0$ are obtained with the approximation $A(T) \approx \widetilde{\chi}(T)$

The T-dependence of the mixing angle $\phi(T)$ for the cases of the T-independent correction term in $\chi(T)(\delta=0)$ and the correction term in $\chi(T)$ behaving like the leading term, i.e., like the chiral condensate ($\delta=1$), and for the two values of $\widetilde{\chi}(T=0)=\chi_{Y M}$.

T-dependence of pseudoscalar masses without GMOR

Results are identical from direct evaluation of solutions and from the mass matrix (but where GMOR was not used at $T=0$):

The behavior of $M_{\eta^{\prime}}(T)$ after $T \approx T_{c}$ results from our model-calculated π \& K starting to violate GMOR there.

T-dependence of pseudoscalar masses with GMOR

Results where GMOR was used to identify

$$
2 f_{K}^{2} M_{K}^{2}-f_{\pi}^{2} M_{\pi}^{2}=f_{s \bar{s}}^{2} M_{s \bar{s}}^{2} \quad \text { ("eq. (23)") }
$$

The behavior of $M_{\eta^{\prime}}(T)$ after $T=T_{c}$ is the same as $M_{s \bar{s}}(T)$ due to using GMOR.

T-dependence of pseudoscalar decay constants

Summary

- The results of the approach through Witt.-Ven. rel. + $\eta-\eta^{\prime}$ mass matrix and Shore's rels. + FKS were shown to be similar numerically.
- The results for Shore's approach (with FKS 1-angle scheme) are also available as analytic, closed-form expressions, and they explain both the similarities and differences in it the results on the $\eta-\eta^{\prime}$ complex.
- The full QCD topological charge parameter A (to which $\chi_{Y M}$ appears only as a numerical approximation at $T=0=\mu$) is not a pure-gauge quantity, but a full QCD quantity. The Leutwyler-Smilga quantity $\widetilde{\chi}$ is the approximation of A with $\langle u \bar{u}\rangle,\langle d \bar{d}\rangle,\langle s \bar{s}\rangle \rightarrow\langle q \bar{q}\rangle$.
This fact refines and gives support to our earlier explanation of the data on η^{\prime} enhanced multiplicity in RHIC experiments at $T>0$, where we replace the T-dependence of χ_{YM} by that of the Leutwyler-Smilga quantity $\widetilde{\chi}(T) \propto$ chiral condensate.
It also motivates additionally our work on extending the same approach to $\mu>0$ for RHIC, NICA, GSI/FAIR, compact stars ...
- \Rightarrow Increased motivation for lattice to calculate A and χ of full QCD

