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D. Klabučara (speaker), D. Horvatića, D. Kekezc
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Introducing η-η′ complex into pseudoscalar nonet

Pseudoscalar mesons of light quarks q = u, d, s are (almost)
Goldstone bosons of DChSB, so for mu,d,s → 0 also vanishing meson
masses2 M2

ud̄
= M2

π+ , M2
us̄ = M2

K , ..., M̂2
NA = diag(M2

uū, M2

dd̄
, M2

ss̄)

QCD chiral behavior reproduced correctly by Dyson-Schwinger-

Bethe-Salpeter approach (DS) – except anomalously heavy η′ !

|ud̄〉 = |π+〉, |us̄〉 = |K+〉, ... but |uū〉, |dd̄〉 and |ss̄〉 do not correspond
to any physical particles (at T = 0 at least!), although in the isospin
limit (adopted from now on) Muū = Mdd̄ = Mud̄ = Mπ. I = good
Q.no. ⇒ recouple into "more physical" I3 = 0 octet-singlet basis

I = 1 |π0〉 =
1√
2
(|uū〉 − |dd̄〉) ,

but I = 0 |η8〉 =
1√
6
(|uū〉 + |dd̄〉 − 2|ss̄〉) ≈ |η〉 mixes with

I = 0 |η0〉 =
1√
3
(|uū〉 + |dd̄〉 + |ss̄〉) ≈ |η′〉 seems too heavy forGB .
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Exceptη-η′, pseudoscalars qualitatively understood at bothT = 0 and T > 0

e.g., a simple DS model (so-called ’separable’) yields:
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‘Deconfinement’ Td,q from Sq pole - very different Td,u, Td,s ... can be
cured/synchronized with TCh(= Tcri) by Polyakov loop

But what about η and η′ both at T = 0 and T > 0 ?
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Physicalη and η′ must have a diagonal mass matrix

the “non-anomalous” (chiral-limit-vanishing!) part of the
mass-squared matrix of π0 and η’s is (in π0-η8-η0 basis)

M̂2
NA =

0

B

B

@

M2
π 0 0

0 M2
88 M2

80

0 M2
08 M2

00

1

C

C

A

diagonalization

=⇒
UA(1) problem

0

B

B

@

M2
π 0 0

0 M2
π 0

0 0 M2
ss̄

1

C

C

A

M2
88 ≡ 〈η8|M̂2

NA|η8〉 =
2

3
(M2

ss̄+
1

2
M2

π), M2
00 ≡ 〈η0|M̂2

NA|η0〉 =
2

3
(
1

2
M2

ss̄+M2
π),

M2
80 ≡ 〈η8|M̂2

NA|η0〉 = M2
08 =

√
2

3
(M2

π − M2
ss̄)

What reproduces Mπ & MK cannot also Mη = 548 & Mη′ = 958 MeV!

M̂2
NA not enough! To avoid the UA(1) problem, one

must break the UA(1) symmetry (as it is destroyed by
the gluon anomaly) at least at the level of the masses.
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Why η0 ≈ η′ has an anomalous piece of mass:

UA(1) symmetry is broken by nonabelian ("gluon") axial
anomaly: even in the chiral limit (ChLim, where mq → 0),

∂αψ̄(x)γαγ5

λ0

2
ψ(x) ∝ F a(x) · F̃ a(x) ≡ ǫµνρσF a

µν(x)F
a
ρσ(x) 6= 0 .

This breaks the UA(1) symmetry of QCD and precludes the

9th Goldstone pseudoscalar meson ⇒ very massive η′:
even in ChLim, where mπ,mK ,mη → 0, still (‘ChLim WVR’)

0 6= ∆M2
η0

= ∆M2
η′ =

(A = qty.dim.mass)4

(“fη′”)2
=

6χYM

f2
π

+ O(
1

Nc
)

Out of ChLim : Mη′
2+Mη

2−2MK
2 =

2Nf

f2
π

χYM

(
+O(

1

Nc
)

)
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Anomalous part of η0 mass:∆M 2
η0

= χYM
2Nf

f2
π

+O( 1
Nc

)

QCD chiral behavior (reproduced by DS approach) of the
non-anomalous parts of masses of light qq̄′ pseudoscalars
(i.e., all parts except ∆Mη0 ) : M2

qq̄′ = const (mq +mq′), (q, q′ = u, d, s) .

⇒ non-anomalous parts of the masses in WVR cancel:
Mη′

2 +Mη
2 − 2MK

2 ≈ ∆Mη0
2 , approx. as in ChLim WVR

χ =

∫
d4x 〈0|Q(x)Q(0)|0〉 , Q(x) =

g2

64π2
ǫµνρσF

a
µν(x)F

a
ρσ(x)

Q(x) = topological charge density operator

In WV rel., χ is the pure-glue, YM one, χYM ↔ χquench.

Lattice: good χYM, subtleties with χ of light-flavor QCD [Bernard et al.,

JHEP 1206 (2012) 051] where χ = − 〈q̄q〉0
P

q=u,d,s

1
mq

+ C(higherO inm).
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Gluon anomaly is not accessible to ladder approximation

All masses in M̂2
NA are calculated in the ladder approx.,

which cannot include the gluon anomaly contributions.

Large Nc: the gluon anomaly suppressed as 1/Nc! →
Include its effect just at the level of masses: break the
UA(1) symmetry and avoid the UA(1) problem by shifting
the η0 (squared) mass by anomalous contribution 3β.

complete mass matrix is then M̂2 = M̂2
NA + M̂2

A where

M̂2
A =

0

B

B

@

0 0 0

0 0 0

0 0 3β

1

C

C

A

does not vanish in the chiral limit.

3β = ∆M2
η0

= the anomalous mass2 of η0 [in SU(3) limit incl.
ChLim] is related to the YM topological susceptibility. Fixed
by phenomenology or (here) taken from the lattice.
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Transitions related to theUA(1) anomaly

Transitions between hidden flavors |qq̄〉 → |q′q̄′〉
(q, q′ = u, d, s)

 P

f

f 
–

f´

f´
–

P´

Diamond graph: just the simplest example of a transition |qq̄〉 → |q′q̄′〉
(q, q′ = u, d, s), contributing to the anomalous masses in the η-η′

complex, but not included in the interaction kernel in the ladder
approximation.
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Anomalous mass matrix inqq̄ and octet-singlet bases

we can also rewrite M̂2
A in the qq̄ basis |uū〉, |dd̄〉, |ss̄〉

M̂2
A = β

0

B

B

@

1 1 1

1 1 1

1 1 1

1

C

C

A

flavor

−→
breaking

M̂2
A = β

0

B

B

@

1 1 X

1 1 X

X X X2

1

C

C

A

We introduced the effects of the flavor breaking on the
anomaly-induced transitions |qq̄〉 → |q′q̄′〉 (q, q′ = u, d, s).
ss̄ transition suppression estimated by X ≈ fπ/fss̄.

Then, M̂2
A in the octet-singlet basis is modified to

M̂2
A = β

0

B

B

@

0 0 0

0 2
3
(1 − X)2

√
2

3
(2 − X − X2)

0
√

2
3

(2 − X − X2) 1
3
(2 + X)2

1

C

C

A

→ In the isospin limit, one can always restrict to 2 × 2

submatrix of etas (I=0), as π0 (I=1) is decoupled then.
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Anomalous mass matrix and mixing inNS–S basis

nonstrange (NS) – strange (S) basis

|ηNS〉 =
1√
2
(|uū〉 + |dd̄〉) =

1√
3
|η8〉 +

r

2

3
|η0〉 ,

|ηS〉 = |ss̄〉 = −
r

2

3
|η8〉 +

1√
3
|η0〉 .

the η–η′ mass matrix in this basis is

M̂2 =

0

@

M2
ηNS

M2
ηSηNS

M2
ηNSηS

M2
ηS

1

A =

0

@

M2
uū + 2β

√
2βX

√
2βX M2

ss̄ + βX2

1

A

φ→

0

@

M2
η 0

0 M2
η′

1

A

NS–S mixing relations – states rotation diagonalizing M̂2 :

|η〉 = cos φ|ηNS〉 − sin φ|ηS〉 , |η′〉 = sin φ|ηNS〉 + cos φ|ηS〉 .

θ = φ − arctan
√

2
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Finally, fix anomalous contribution to η-η′:

Equal traces of diagonalized & non-diagnlz. M̂2 demand 1st eqality in

β(2+X2) = M2
η+M2

η′−2M2
K =

2Nf

f2
π

χYM (2ndequality = WV rel.)

requiring that the experimental trace (M2
η +M2

η′)exp

≈1.22 GeV2 be reproduced by the theoretical M̂2, yields
βfit = 1

2+X2 [(M2
η +M2

η′)exp − (M2
uū +M2

ss̄)]

Or, get β from lattice χYM ! Then no free parameters!

then, can calculate the NS-S mixing angle φ

tan 2φ =
2 M2

ηSηNS

M2
ηS

− M2
ηNS

=
2
√

2βX

M2
ηS

− M2
ηNS

and

M2
ηNS

= M2
uū+2β = M2

π+2β, M2
ηS

= M2
ss̄+βX

2 = M2
ss̄+β

f2
π

f2
ss̄
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Physicalη, η′ eigenmasses – of the two-level type:

The diagonalization of the NS-S mass matrix then
finally gives us the calculated η and η′ masses:

M2
η = cos2 φ M2

ηNS
− M2

ηSηNS
sin 2φ + sin2 φ M2

ηS
(note M2

ηSηNS
=

√
2βX)

M2
η′ = sin2 φ M2

ηNS
+ M2

ηSηNS
sin 2φ + cos2 φ M2

ηS

Equivalently, secular determinant ⇒ the eigenvalues of 2×2 matrix:

M2
η =

1

2

[
M2

ηNS
+ M2

ηS
−
√

(M2
ηNS

− M2
ηS

)2 + 4 M4
ηSηNS

]

=
1

2

[
M2

π + M2
ss̄ + β(2+X2) −

√
(M2

π +2β−M2
ss̄−βX2)2 + 8β2X2

]

M2
η′ =

1

2

[
M2

ηNS
+ M2

ηS
+
√

(M2
ηNS

− M2
ηS

)2 + 4 M4
ηSηNS

]

=
1

2

[
M2

π + M2
ss̄ + β(2+X2) +

√
(M2

π +2β−M2
ss̄−βX2)2 + 8β2X2

]
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Separable model results onη and η′ at T = 0

βfit βlatt. Exp.
θ -12.22◦ -13.92◦

Mη [MeV] 548.9 543.1 547.75
Mη′ [MeV] 958.5 932.5 957.78

X 0.772 0.772
3β [GeV2] 0.845 0.781

X = fπ/fss̄ as well as the whole M̂2
NA (consisting of Mπ and Mss̄)

are calculated model quantities.

βlatt. was obtained from χYM(T = 0) = (175.7 MeV)4

But is an extension to high T possible, as there is a large mismatch
of characteristic temperature scales of the pure-gauge YM (Tc ∼ 270

MeV) vs. full QCD (Tc ∼ 160 MeV) with quarks?

Concretely in WVR, χYM is more T -resistant than QCD quantities
Mη,η′,K and fπ. Does WVR become unusable as T approaches the
(pseudo-)critical temperatures of full QCD, such as T ∼ TCh?
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Solution: another relation connecting YM and QCD

Early work by Di Vecchia & Veneziano ... Leutwyler &
Smilga [Phys. Rev. D46 (1992) 5607] derived, up to O( 1

Nc
),

(atT = 0), χYM =
χ

1 + χ
Nf

m 〈q̄q〉0

≡ χ̃

⇒ relates χYM to the full-QCD topological susceptibility χ,
chiral condensate 〈q̄q〉0 and m ≡ Nf× the reduced mass.
Presently Nf = 3, i.e., Nf/m =

∑
q=u,d,s(1/mq).

in the limit of very heavy quarks, mq,m→ ∞, it confirms
expectations that χYM = value of topolog. susceptibility
in quenched QCD, χYM = χ(mq = ∞)

It shows χ ≤ min(−m 〈q̄q〉0/Nf , χYM)
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LS relation also holds in the oposite limit!

In the (presently pertinent!) regime of light quarks there is
Di Vecchia-Veneziano result for small mq:

χ = −m 〈q̄q〉0
Nf

+ C(m) ,

C(m) = small corrections of higher orders in small mq, ...
but C(m) should not be neglected, since C(m) = 0 would
imply that χYM = ∞.

LS relation fixes the value of the correction at T = 0:

1

C(m)
=

Nf

m 〈q̄q〉0
− χYM(0)

(
Nf

m 〈q̄q〉0

)2

.
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T -dependence of̃χ

LS relation also must break down as T approaches the
(pseudo-)critical temperatures of full QCD (∼ TCh) since
YM quantity χYM, is much more T -resistant than χ̃.

χ̃ consists of the full-QCD quantities χ and 〈q̄q〉0,
characterized by TCh, just as fπ(T ).

Thus, the troublesome mismatch in T -dependences of
fπ(T ) and the pure-gauge χYM(T ) is expected to
disappear if χYM(T ) is replaced by χ̃(T ), the T -extended
RHS of LS relation

The usual, successful zero-T WV relation is thereby
retained, since χYM = χ̃ at T = 0.
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T -dependence ofχ and χ̃

Extending the light-quark full-QCD topol. susceptibility
χ is somewhat uncertain, as there is no guidance from
lattice [unlike for χYM(T )].

The leading term in Di Vecchia-Veneziano relation
∝ 〈q̄q〉0(T ) very plausibly, but for the correction term we
have to explore a range of Ansätze, i.e.,

χ(T ) = −m 〈q̄q〉0(T )

Nf
+ C(m)

[ 〈q̄q〉0(T )

〈q̄q〉0(T = 0)

]δ

, (0 ≤ δ < 2).

Then, χ̃(T ) =

=
〈q̄q〉0(T )

∑
q=u,d,s

(
1

mq

)



1 − 〈q̄q〉0(T )

∑
q=u,d,s

(
1

mq

) 1

C(m)

[〈q̄q〉0(T = 0)

〈q̄q〉0(T )

]δ


 .
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Chiral condensate〈qq̄〉0(T ) and resulting χ̃(T )
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Case 1:T -independent correction term inχ
[Benić, Horvatić, Kekez and Klabučar, Phys. Rev. D 84 (2011) 016006.]
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Case 2: StronglyT -dependent correction term∝ 〈q̄q〉0(T )
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Recapitulation of so far, & what follows

Leutwyler-Smilga and Di Vecchia-Veneziano relations
1.) enable one to retain unchanged WV relation, with
χYM, for T = 0 (in fact, any T sufficiently below TCh) and
2.) to replace the T -dependence of χYM by that of χ̃
which is essentialy that of the chiral condensate. This

provides an explanation for the η′ mass drop and thus

for the data on increased η′ multiplicities, and indicates
how chiral restoration may be linked with the UA(1) one.

We shall show our exact solutions to Shore’s
generalization of WVR support the above
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Shore’s generalization of WV valid to all orders in1/Nc

WV rel. – lowest order in 1/Nc – improved like this:

(f0
η′)2M2

η′ + (f0
η )2M2

η = 1
3

(
f2
πM

2
π + 2f2

KM
2
K

)
+ 6A (1)

f0
η′f8

η′M2
η′ + f0

η f
8
ηM

2
η = 2

√
2

3

(
f2
πM

2
π − f2

KM
2
K

)
(2)

(f8
η′)2M2

η′ + (f8
η )2M2

η = − 1
3

(
f2
πM

2
π − 4f2

KM
2
K

)
(3)

A is the full QCD topological charge parameter

A =
χ

1 + χ( 1

〈ūu〉mu
+ 1

〈d̄d〉md
+ 1

〈s̄s〉ms
)

(4)

= hard to calculate on lattice ...
However, it is known that A = χYM + O( 1

Nc
)
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Reduction to the standard WV relation (= largeNc result)

Replacement 3 different condensates → 〈q̄q〉0 reduces the
full QCD topological charge A (4) to the combination χ̃ on
the RHS of Leutwyler-Smilga relation (lowest O( 1

Nc
)):

χYM =
χ

1 + χ
〈q̄q〉0

∑

q=u,d,s

1
mq

→ χ̃(T, µ) =
〈q̄q(T, µ)〉0∑

q=u,d,s

1
mq

+ corr′s ≈ A(T, µ)

Previously, we only conjectured χYM(T ) → χ̃(T ) [Benić et al, Phys.

Rev. D84 (2011) 016006] , to explain increased η′ multiplicity at RHIC noted by Csörgő et al.

Also note (1)+(3) ⇒

(f0
η′)2M2

η′ + (f0
η )2M2

η + (f8
η )2M2

η + (f8
η′)2M2

η′ − 2f2
KM

2
K = 6A

Then, large Nc limit and ‘off-diagonal’ f0
η , f

8
η′ → 0, as

well as f0
η′, f8

η , fK → fπ, recovers the standard WV.
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η′ and η have 4 independent decay constants

f0
η′, f8

η , f
0
η , f

8
η′ : 〈0|Aa µ(x)|P (p)〉 = ifa

P p
µe−ip·x, a = 8, 0; P = η, η′ .

Equivalently, one has 4 related but different constants fNS
η′ , fNS

η , fS
η , fS

η′ if instead of
octet and singlet axial currents (a = 8, 0) one takes this matrix element of the
nonstrange-strange axial currents (a = NS ,S )

A
µ
NS

(x) =
1√
3

A8 µ(x) +

r

2

3
A0 µ(x) =

1

2

`

ū(x)γµγ5u(x) + d̄(x)γµγ5d(x)
´

,

A
µ
S(x) = −

r

2

3
A8 µ(x) +

1√
3

A0 µ(x) =
1√
2

s̄(x)γµγ5s(x) ,

2

4

fNS
η fS

η

fNS
η′ fS

η′

3

5 =

2

4

f8
η f0

η

f8
η′ f0

η′

3

5

2

4

1√
3

−
q

2
3

q

2
3

1√
3

3

5 ,

a, P = NS, S : 〈0|Aµ
NS

(x)|ηNS(p)〉 = ifNS pµe−ip·x , 〈0|Aµ
NS

(x)|ηS(p)〉 = 0 ,

a, P = NS, S : 〈0|Aµ
S
(x)|ηS(p)〉 = ifS pµe−ip·x , 〈0|Aµ

S
(x)|ηNS(p)〉 = 0 ,

Note: in a DS approach, fNS = fuū = fdd̄ = fπ , fS = fss̄ are calculated quantities
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Two Mixing Angles and FKS one-angle scheme

Any 4 η-η′ decay constants conveniently parametrized
in terms of two decay constants and two angles:

f8
η = cos θ8 f8 , f0

η = − sin θ0 f0 , fNS
η = cos φNS fNS , fS

η = − sin φS fS ,

f8
η′ = sin θ8 f8 , f0

η′ = cos θ0 f0 , fNS
η′ = sin φNSfNS , fS

η′ = cos φSfS

Big practicaldifference between 0-8 and NS-S schemes:

while θ8 and θ0 differ a lot from each other and from
θ ≈ (θ8 + θ0)/2, FKS showed that φNS ≈ φS ≈ φ.

[
fNS
η fS

η

fNS
η′ fS

η′

]
=

[
cosφ − sinφ

sinφ cosφ

][
fNS 0

0 fS

]
.

On η-η′ complex and its temperature dependence⋆ – p. 25/35



For four decay constants, can use FKS one-angle scheme!

φ relates {f8
η , f

8
η′, f0

η , f
0
η′} with {fNS , fS}= {fπ, fss̄}:

[
f8
η f0

η

f8
η′ f0

η′

]
=

[
cosφ − sinφ

sinφ cosφ

][
fNS 0

0 fS

]


1√
3

√
2
3

−
√

2
3

1√
3




Some other useful relations between quantities of NS-S
(FKS) and 0-8 schemes:

f8 =

√
1

3
f2

NS +
2

3
f2

S , θ8 = φ− arctan

(√
2fS

fNS

)
,

f0 =

√
2

3
f2

NS +
1

3
f2

S , θ0 = φ− arctan

(√
2fNS

fS

)
.

On η-η′ complex and its temperature dependence⋆ – p. 26/35



Solve numerically Shore’s Eqs. (1)-(3) forMη′,Mη, andφ:

Inputs: Mπ, MK , fπ = fNS, fss̄ = fS and fK , calculated in 3 different DS models

χYM 1914 175.74 1914 175.74 1914 175.74

Mη 499.8 485.7 496.7 482.8 526.2 507.0

Mη′ 931.4 815.8 934.9 818.4 983.2 868.7

φ 52.01◦ 46.11◦ 51.85◦ 46.07◦ 47.23◦ 40.86◦

θ −2.72◦ −8.62◦ −2.89◦ −8.67◦ −7.51◦ −13.87◦

θ0 7.74◦ 1.84◦ 7.17◦ 1.39◦ −0.33◦ −6.69◦

θ8 −12.00◦ −17.90◦ −11.85◦ −17.6◦ −14.12◦ −20.47◦

f0 108.8 108.8 107.9 107.9 101.8 101.8

f8 122.6 122.6 121.1 121.1 110.7 110.7

f0
η -14.7 -3.5 -13.5 -2.6 0.6 11.9

f0
η′ 107.9 108.8 107.1 107.9 101.8 101.1

f8
η 119.9 116.7 118.5 115.4 107.4 103.7

f8
η′ -25.5 -37.7 -2.49 -37.6 -27.0 -38.7

(in D. Horvatić et al., Eur. Phys. J. A 38 (2008) 257.) Mη,η′ and f ’s in MeV,
χYM is in MeV4.
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The same is now reproducedanalytically:

Eqs. (1)-(3) ⇒ two closed-form solutions for Mη, Mη′

and tanφ in terms of fπ, fss̄,Mπ, MK and A.
The set reproducing the previous numerical results is:

tanφ =
−2Af2

π + 4Af2
ss̄ − 2f2

Kf
2
πM

2
K + f4

πM
2
π + f2

πf
2
ss̄M

2
π + ∆

4
√

2Afπ fss̄

M2
η,η′ =

2Af2
π + 4Af2

ss̄ + 2f2
Kf

2
πM

2
K − f4

πM
2
π + f2

πf
2
ss̄M

2
π ∓ ∆

2f2
πf

2
ss̄

where ∆2 =

32A2 f2
πf

2
ss̄ +

{
2A(f2

π − 2f2
ss̄) + f2

π

[
2f2

KM
2
K − (f2

π + f2
ss̄)M

2
π

]}2

[Benić, Horvatić, Kekez & Klabučar, Phys. Lett. B738 (2014) 113]
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Find matrix elem’s in NS-S basis from theseMη,Mη′, φ:

M2
ηNS

≡M2
NS = cos2 φM2

η + sin2 φM2
η′

M2
ηS

≡M2
S = sin2 φM2

η + cos2 φM2
η′

M2
ηNSηS

≡M2
NSS = sinφ cosφ (M2

η −M2
η′)

to use M2
η,η′ =

1

2

[
M2

NS +M2
S ∓

√
(M2

NS −M2
S)2 + 4M4

NSS

]

Mathematica leads to surprisingly simple results:

M2
NS = M2

π +
4A

f2
π

, M2
NSS =

2
√

2A

fπfss̄

M2
S =

1

f2
ss̄

[2 f2
K M2

K − f2
π M

2
π ] +

2A

f2
ss̄

= M2
ss̄ +

2A

f2
ss̄

f2
π M

2
π = −mu〈uū〉−md〈dd̄〉 and f2

K M2
K = −mu〈uū〉−ms〈ss̄〉

⇒ 2 f2
K M2

K − f2
π M

2
π = f2

ss̄M
2
ss̄ "eq. (23)"
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CompareMNS,MNSS andMS with NS-S mass matrix:
[
M2

NS M2
NSS

M2
NSS M2

S

]
=

[
M2

π + 2β
√

2βX√
2βX M2

ss̄ + βX2

]

⇒ Very similar formulas in WV case and "Shore case":

1.) βWV =
6χY M

f2
π(2 +X2)

, βShore+FKS =
2A

f2
π

≈ 2χY M

f2
π

Explains why Shore’s scheme needs higher values of χY M

than WV, to approach empirical masses.

2.) X =
fπ

fss
the SAME in the both WV and Shore cases ...

... but in the "Shore case", it follows from equations! Before,
incl. WV, it was an input – estimate, educated guess.
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Extending Shore + FKS scheme toT > 0
Presently, all results of the Shore + FKS scheme at T > 0

are obtained with the approximation A(T ) ≈ χ̃(T )
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χYM=(0.1757 GeV)4  , δ=1

The T -dependence of the mixing angle φ(T ) for the cases of the T -independent correction

term in χ(T ) (δ = 0) and the correction term in χ(T ) behaving like the leading term, i.e., like

the chiral condensate (δ = 1), and for the two values of eχ(T = 0) = χY M .
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T -dependence of pseudoscalar masses without GMOR
Results are identical from direct evaluation of solutions and from
the mass matrix (but where GMOR was not used at T = 0):
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Shore direct, χYM=(0.191 GeV)4

2πT
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mη , δ=0

mη , δ=1

mη′ , δ=0

mη′ , δ=1

The behavior of Mη′(T ) after T ≈ Tc results from our model-calculated π & K starting to

violate GMOR there.
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T -dependence of pseudoscalar masses with GMOR
Results where GMOR was used to identify

2 f2
K M2

K − f2
π M2

π = f2
ss̄ M2

ss̄ ("eq. (23)")
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Shore to mass matrix + eq. (23), χYM=(0.191 GeV)4
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The behavior of Mη′(T ) after T = Tc is the same as Mss̄(T ) due to using GMOR.
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T -dependence of pseudoscalar decay constants
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Summary
The results of the approach through Witt.-Ven. rel. + η-η′ mass
matrix and Shore’s rels. + FKS were shown to be similar numerically.

The results for Shore’s approach (with FKS 1-angle scheme) are also
available as analytic, closed-form expressions, and they explain both
the similarities and differences in it the results on the η-η′ complex.

The full QCD topological charge parameter A (to which χY M appears
only as a numerical approximation at T = 0 = µ) is not a pure-gauge
quantity, but a full QCD quantity. The Leutwyler-Smilga quantity χ̃ is
the approximation of A with 〈uū〉, 〈dd̄〉, 〈ss̄〉 → 〈qq̄〉.
This fact refines and gives support to our earlier explanation of the
data on η′ enhanced multiplicity in RHIC experiments at T > 0, where
we replace the T -dependence of χYM by that of the Leutwyler-Smilga
quantity χ̃(T ) ∝ chiral condensate.
It also motivates additionally our work on extending the same
approach to µ > 0 for RHIC, NICA, GSI/FAIR, compact stars ...

⇒ Increased motivation for lattice to calculate A and χ of full QCD
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