# Oscillating HBT from asymmetrical Buda-Lund model

#### Máté Csanád, András Szabó, Sándor Lökös

Zimányi School, 2014.12.02.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Outline

- Introduction Motivation to introduce generalized asymmetry to a hydrodynamical description
- A generalized solution
   Presenting a known hydro solution with generalized asymmetry
- The Buda-Lund ellipsoidal model Presenting the original model
- <u>The extended model and observables</u>
   Presenting the new model and calculate some observables
- Mix of the asymmetry parameters How the v<sub>i</sub> determined by asymmetry parameters
- <u>HBT and oscillating HBT</u> Calculate HBT's from generalized model
- Outlook

#### Introduction - motivation

- sQGP discovered at RHIC and created LHC
- Almost perfect, expanding fluid  $\rightarrow$  hydrodynamical approach
- ullet Non-central collision o assuming ellipsoidal asymmetry
- Characterize with scaling variable:  $s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2}$
- But nucleii contain finite number of nucleon
- $\bullet\,$  Generalize the asymmetry  $\to\,$  higher order anisotropy



• Can we put it to an exact solution?

## Generalization of ellipsoidal symmetry

- Rewrite the scaling variable  $s = \frac{r_x^2}{X^2} + \frac{r_y^2}{Y^2} + \frac{r_z^2}{Z^2}$  in cylindrical coordinates
- $s = \frac{r^2}{R^2} (1 + \epsilon_2 \cos(2\varphi))$  where  $\frac{1}{R^2} = \frac{1}{X^2} + \frac{1}{Y^2}$  and  $\epsilon_2 = \frac{X^2 Y^2}{X^2 + Y^2}$
- Generalized N-pole symmetry in transverse plane  $s = \frac{r^N}{R^N} (1 + \epsilon_N) \cos(N\varphi)$
- Multipole symmetries can be combined in form

$$s = \sum_{N} rac{r^{N}}{R^{N}} (1 + \epsilon_{N} \cos(arphi - \psi_{N}))$$

• Aligned by Nth order reaction planes  $\psi_N$ 

 $\epsilon_2 = 0.8, \, \epsilon_3 = 0, \, \epsilon_4 = 0 \qquad \qquad \epsilon_2 = 0.8, \, \epsilon_3 = 0.5, \, \epsilon_4 = 0 \qquad \qquad \epsilon_2 = 0.8, \, \epsilon_3 = 0.5, \, \epsilon_4 = 0.4$ 

## New solutions of hydrodynamics

Details: Csanád, Szabó: Phys.Rev.C90,054911 (2014)

• New solution with multipole symmetry

$$s = \sum_{N} \frac{r^{N}}{R^{N}} (1 + \epsilon_{N} \cos(\varphi - \psi_{N})) + \frac{z^{N}}{Z^{N}}$$
$$u^{\mu} = \gamma \left( 1, \frac{\dot{R}}{R} r \cos\varphi, \frac{\dot{R}}{R} r \sin\varphi, \frac{\dot{R}}{R} z \right)$$
$$T = T_{f} \left( \frac{\tau_{f}}{\tau} \right)^{\frac{3}{\kappa}} \frac{1}{\nu(s)} \quad \text{choose Gaussian:} \quad \nu(s) = e^{bs}$$

- Observed higher order harmonics:  $S(x, p) \propto exp\left(\frac{p_{\mu}u^{\mu}(x)}{T(x)}\right)\delta(\tau, \tau_f)\frac{p_{\mu}u^{\mu}}{u_0}$
- Momentum distribution  $N_1(p)$  and anisotropies  $v_n(p_t)$  can be yielded
- Succesful fit!

# What missing from the solution

- Real 3+1D solution
- Take into account the general spatial symmetry
- Still use Hubble-type velocity field
- Collective behaviour demand to generalized this
- Use of constant  $\kappa$
- These problem can be solved in a hydrodynamical model

### Ellipsoidal Buda-Lund model

Csanád, Csörgő, Lorstad Nucl. Phys. A742, 80-94 (2004)

- Final state parametrization
- Ellipsoidal symmetry in space and in velocity field (Hubble-type)

$$s = \frac{r_x^2}{2X^2} + \frac{r_y^2}{2Y^2} + \frac{r_z^2}{2Z^2} \qquad u_\mu = \left(\gamma, r_x \frac{\dot{X}}{X}, r_x \frac{\dot{Y}}{Y}, r_z \frac{\dot{Z}}{Z}\right)$$

• Thermal distribution is influented by spatial geometry

$$\frac{1}{T} = \frac{1}{T_0} \left( 1 + a^2 s \right)$$

• Source function of the model

$$S(x,p)d^{4}x = \frac{g}{(2\pi)^{3}} \frac{p_{\mu}u^{\mu}H(\tau)d^{4}x}{e^{\frac{p_{\mu}u^{\mu}-\mu}{T}} - s_{q}}$$

 $H(\tau)$  is a Gaussian function centered to  $\tau_0$  with width  $\Delta \tau^2$ 

7 / 18

# Observables from ellipsoidal Buda-Lund model

• Saddle-point (SP) approximation  $\rightarrow$  source function can be integrated analitically

$$S(x,p)d^{4}x = \frac{g}{(2\pi)^{3}} \frac{p_{\mu}u^{\mu}H(\tau)d^{4}x}{e^{\frac{p_{\mu}u^{\mu}-\mu}{T}} + s_{q}} e^{R_{\mu\nu}^{-2}(x-x_{s})^{\mu}(x-x_{s})^{\nu}}$$

• 
$$R_{\mu
u} = \partial_{\mu}\partial_{
u}(-\ln S_0(x,p))|_s$$
, where  $S_0(x,p) = rac{H( au)}{B(x,p)+s_q}$ 

• The SP is definied by  $\partial_{\mu}(-\ln S_0(x_s,p))=0$ 

• 
$$\int d^4x S(x,p) = N_1(p)$$
 can be calculated

• In transverse momentum space  $N_1(p_t)$  distribution and  $v_2(p_t)$  flow can be yielded

$$v_n = \frac{\int_0^{2\pi} d\alpha N_1(p) \cos(n\alpha)}{\int_0^{2\pi} d\alpha N_1(p)} = \frac{I_n(w)}{I_0(w)}$$

• In this model  $v_{2n+1}$  flows are vanishing

# Generalized model

- Change to cylindrical coordinates:  $(x, y, z) \rightarrow (r, \varphi, r_z)$
- Ellipsoidal scaling variable:  $s = \frac{r^2}{R^2}(1 + \epsilon_2 \cos(2\varphi)) + \frac{r_z^2}{Z^2}$
- Modify this with  $\epsilon_3$  to describe the triangular symmetry
- Trianular scale function:

$$s = \frac{r^2}{R^2}(1 + \epsilon_2 \cos(2\varphi)) + \frac{r^3}{R^3}\epsilon_3 \cos(3\varphi) + \frac{r_z^2}{Z^2}$$

- The velocity field should be generalized too!
- Calculate from a potential:

$$\Phi = \frac{r^2}{2H} (1 + \chi_2 \cos(2\varphi)) + \frac{r_z}{H_z}$$

• Modify the potential:

$$\Phi = \frac{r^2}{2H}(1 + \chi_2 \cos(2\varphi)) + \frac{r^3}{3R^2}\chi_3 \cos(3\varphi) + \frac{r_z}{H_z}$$

• The velocity fied can be calculated as  $u_{\mu} = (\gamma_{,\partial_x} \Phi, \partial_y \Phi, \partial_z \Phi)$ 

### The velocity field



Figure : 1.  $\chi_2 = \chi_3 = 0$ , 2.  $\chi_2 = 0.2$ , 3.  $\chi_2 = 0.3$ , 4.  $\chi_3 = 0.3$ , 5.  $\chi_3 = 0.4$ , 6.  $\chi_2 = 0.3$ ,  $\chi_3 = 0.3$  is the set of  $\chi_1 = 0.3$ .

#### Observables from the generalized model

- Integrate the source function with the new scale function and the new velocity field
- SP approximation cannot be used as early
- Numerical calculation in progress but another approximation can be applied

• Let assume 
$$\left(rac{r_i}{H_i}
ight)^n$$
 are vanishing if n>2

- The SP integral can be calculate analytically
- Yield the invariant momentum distribution, elliptical, triangular flow and HBT radii

#### Parameter dependence of the flows

Expected:

- $v_2$  depend on  $\epsilon_2$  and  $\chi_2$
- $v_2$  not depend on  $\epsilon_3$  and  $\chi_3$

#### $v_2$ depend on $\epsilon_2$ and $\chi_2$ $v_3$ not depend on $\epsilon_2$ and $\chi_2$



# Combination of the parameter

- $v_i$  is determined by  $\epsilon_i$  and  $\chi_i$ , especially true for  $v_3$
- There is no such a solutions found yet



## Azimuthally sensitive HBT radii

- Explicit HBT radii can be yielded:  $R_i^2 = \frac{X_i^2}{2(\frac{E}{T_0}a^2 b)}$
- Not depend on asymmetry parameters or transverse angle
- ullet Rotate system to  $\mathit{out-side-long}$  system with angle arphi



#### Azimuthally sensitive HBT radii in 3D



≣ ∽へで 15/18

#### Azimuthally sensitive HBT radii in 3D



≣ ৩৭ে 16/18

#### Azimuthally sensitive HBT radii in 3D



■ ▶ ■ のQ (~ 17 / 18

# Summary and outlook

- Generalized asymmetry implemented to a hydrodynamical solution
- Compared with data succesfully!
- Still Hubble-type velocity profile
- Generalized asymmetry implemented to a hydrodynamical model
- Extend the symmetry to the velocity field
- With a harsh approxmation  $N_1(p_t), v_2(p_t), v_3(p_t)$  yielded
- More precise with numerical analyzis (in progress)
- $\epsilon_2, \epsilon_3$  and  $\chi_2, \chi_3$  dependence is important

# Thank you for your attention!