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Introduction - motivation

sQGP discovered at RHIC and created LHC

Almost perfect, expanding �uid → hydrodynamical approach

Non-central collision → assuming ellipsoidal asymmetry

Characterize with scaling variable: s = r2x
X 2 +

r2y
Y 2 + r2z

Z2

But nucleii contain �nite number of nucleon

Generalize the asymmetry → higher order anisotropy

Can we put it to an exact solution?
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Generalization of ellipsoidal symmetry

Rewrite the scaling variable s = r2x
X 2 +

r2y
Y 2 + r2z

Z2 in cylindrical

coordinates

s = r2

R2 (1 + ε2 cos(2ϕ)) where 1

R2 = 1

X 2 + 1

Y 2 and ε2 = X 2−Y 2

X 2+Y 2

Generalized N-pole symmetry in transverse plane

s = rN

RN (1 + εN) cos(Nϕ)
Multipole symmetries can be combined in form

s =
∑
N

rN

RN
(1 + εN cos(ϕ− ψN))

Aligned by Nth order reaction planes ψN
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New solutions of hydrodynamics

Details: Csanád, Szabó: Phys.Rev.C90,054911 (2014)

New solution with multipole symmetry

s =
∑
N

rN

RN
(1 + εN cos(ϕ− ψN)) +

zN

ZN

uµ =γ

(
1,

Ṙ

R
r cosϕ,

Ṙ

R
r sinϕ,

Ṙ

R
z

)

T =Tf

(τf
τ

) 3
κ 1

ν(s)
choose Gaussian: ν(s) = ebs

Observed higher order harmonics:

S(x , p) ∝ exp
(
pµu

µ(x)
T (x)

)
δ(τ, τf )

pµu
µ

u0

Momentum distribution N1(p) and anisotropies vn(pt) can be

yielded

Succesful �t!
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What missing from the solution

Real 3+1D solution

Take into account the general spatial symmetry

Still use Hubble-type velocity �eld

Collective behaviour demand to generalized this

Use of constant κ

These problem can be solved in a hydrodynamical model
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Ellipsoidal Buda-Lund model

Csanád, Csörg®, Lorstad Nucl.Phys.A742, 80-94 (2004)

Final state parametrization

Ellipsoidal symmetry in space and in velocity �eld

(Hubble-type)

s =
r2x
2X 2

+
r2y

2Y 2
+

r2z
2Z 2

uµ =

(
γ, rx

Ẋ

X
, rx

Ẏ

Y
, rz

Ż

Z

)
Thermal distribution is in�uented by spatial geometry

1

T
=

1

T0

(
1 + a2s

)
Source function of the model

S(x , p)d4x =
g

(2π)3
pµu

µH(τ)d4x

e
pµuµ−µ

T − sq

H(τ) is a Gaussian function centered to τ0 with width ∆τ2
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Observables from ellipsoidal Buda-Lund model

Saddle-point (SP) approximation → source function can be

integrated analitically

S(x , p)d4x =
g

(2π)3
pµu

µH(τ)d4x

e
pµuµ−µ

T + sq

eR
−2
µν (x−xs)µ(x−xs)ν

Rµν = ∂µ∂ν(− ln S0(x , p))|s , where S0(x , p) = H(τ)
B(x ,p)+sq

The SP is de�nied by ∂µ(− ln S0(xs , p)) = 0∫
d4xS(x , p) = N1(p) can be calculated

In transverse momentum space N1(pt) distribution and v2(pt)
�ow can be yielded

vn =

∫
2π
0

dαN1(p) cos(nα)∫
2π
0

dαN1(p)
=

In(w)

I0(w)

In this model v2n+1 �ows are vanishing
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Generalized model

Change to cylindrical coordinates: (x , y , z)→ (r , ϕ, rz)

Ellipsoidal scaling variable: s = r2

R2 (1 + ε2 cos(2ϕ)) + r2z
Z2

Modify this with ε3 to describe the triangular symmetry

Trianular scale function:

s =
r2

R2
(1 + ε2 cos(2ϕ)) +

r3

R3
ε3 cos(3ϕ) +

r2z
Z 2

The velocity �eld should be generalized too!

Calculate from a potential:

Φ =
r2

2H
(1 + χ2 cos(2ϕ)) +

rz

Hz

Modify the potential:

Φ =
r2

2H
(1 + χ2 cos(2ϕ)) +

r3

3R2
χ3 cos(3ϕ) +

rz

Hz

The velocity �ed can be calculated as uµ = (γ, ∂xΦ, ∂yΦ, ∂zΦ)
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The velocity �eld

Figure : 1. χ2 = χ3 = 0, 2. χ2 = 0.2, 3. χ2 = 0.3,
4. χ3 = 0.3, 5. χ3 = 0.4, 6. χ2 = 0.3, χ3 = 0.3
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Observables from the generalized model

Integrate the source function with the new scale function and

the new velocity �eld

SP approximation cannot be used as early

Numerical calculation in progress but another approximation

can be applied

Let assume
(

ri
Hi

)n
are vanishing if n>2

The SP integral can be calculate analytically

Yield the invariant momentum distribution, elliptical,

triangular �ow and HBT radii
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Parameter dependence of the �ows

Expected:

v2 depend on ε2 and χ2 v2 depend on ε2 and χ2
v2 not depend on ε3 and χ3 v3 not depend on ε2 and χ2
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Combination of the parameter

vi is determined by εi and χi , especially true for v3

There is no such a solutions found yet
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Azimuthally sensitive HBT radii

Explicit HBT radii can be yielded: R2

i =
X 2
i

2

(
E
T0

a2−b
)

Not depend on asymmetry parameters or transverse angle

Rotate system to out − side − long system with angle ϕ
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Azimuthally sensitive HBT radii in 3D

R2

out =
R2
x + R2

y

2
−

R2
y − R2

x

2
cos(2ϕ)

15 / 18



Azimuthally sensitive HBT radii in 3D

R2

side =
R2
x + R2

y

2
+

R2
y − R2

x

2
cos(2ϕ)
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Azimuthally sensitive HBT radii in 3D

Ro,s =
R2
y − R2

x

2
sin(2ϕ)
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Summary and outlook

Generalized asymmetry implemented to a hydrodynamical

solution

Compared with data succesfully!

Still Hubble-type velocity pro�le

Generalized asymmetry implemented to a hydrodynamical

model

Extend the symmetry to the velocity �eld

With a harsh approxmation N1(pt), v2(pt), v3(pt) yielded

More precise with numerical analyzis (in progress)

ε2, ε3 and χ2, χ3 dependence is important

Thank you for your attention!
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