Oscillating HBT from asymmetrical Buda-Lund model

Máté Csanád, András Szabó, Sándor Lökös

Zimányi School, 2014.12.02.

Outline

(1) Introduction

Motivation to introduce generalized asymmetry to a hydrodynamical description
(2) A generalized solution

Presenting a known hydro solution with generalized asymmetry
(3) The Buda-Lund ellipsoidal model

Presenting the original model
(9) The extended model and observables

Presenting the new model and calculate some observables
(5) Mix of the asymmetry parameters

How the v_{i} determined by asymmetry parameters
(0) HBT and oscillating HBT

Calculate HBT's from generalized model

- Outlook

Introduction - motivation

- sQGP discovered at RHIC and created LHC
- Almost perfect, expanding fluid \rightarrow hydrodynamical approach
- Non-central collision \rightarrow assuming ellipsoidal asymmetry
- Characterize with scaling variable: $s=\frac{r_{x}^{2}}{X^{2}}+\frac{r_{y}^{2}}{Y^{2}}+\frac{r_{z}^{2}}{Z^{2}}$
- But nucleii contain finite number of nucleon
- Generalize the asymmetry \rightarrow higher order anisotropy

- Can we put it to an exact solution?

Generalization of ellipsoidal symmetry

- Rewrite the scaling variable $s=\frac{r_{x}^{2}}{X^{2}}+\frac{r_{y}^{2}}{Y^{2}}+\frac{r_{z}^{2}}{Z^{2}}$ in cylindrical coordinates
- $s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos (2 \varphi)\right)$ where $\frac{1}{R^{2}}=\frac{1}{X^{2}}+\frac{1}{Y^{2}}$ and $\epsilon_{2}=\frac{X^{2}-Y^{2}}{X^{2}+Y^{2}}$
- Generalized N -pole symmetry in transverse plane

$$
s=\frac{r^{N}}{R^{N}}\left(1+\epsilon_{N}\right) \cos (N \varphi)
$$

- Multipole symmetries can be combined in form

$$
s=\sum_{N} \frac{r^{N}}{R^{N}}\left(1+\epsilon_{N} \cos \left(\varphi-\psi_{N}\right)\right)
$$

- Aligned by N th order reaction planes ψ_{N}

$$
\varepsilon_{2}=0.8, \varepsilon_{3}=0, \varepsilon_{4}=0 \quad \varepsilon_{2}=0.8, \varepsilon_{3}=0.5, \varepsilon_{4}=0 \quad \varepsilon_{2}=0.8, \varepsilon_{3}=0.5, \varepsilon_{4}=0.4
$$

New solutions of hydrodynamics

Details: Csanád, Szabó: Phys.Rev.C90,054911 (2014)

- New solution with multipole symmetry

$$
\begin{aligned}
s & =\sum_{N} \frac{r^{N}}{R^{N}}\left(1+\epsilon_{N} \cos \left(\varphi-\psi_{N}\right)\right)+\frac{z^{N}}{Z^{N}} \\
u^{\mu} & =\gamma\left(1, \frac{\dot{R}}{R} r \cos \varphi, \frac{\dot{R}}{R} r \sin \varphi, \frac{\dot{R}}{R} z\right) \\
T & =T_{f}\left(\frac{\tau_{f}}{\tau}\right)^{\frac{3}{\kappa}} \frac{1}{\nu(s)} \quad \text { choose Gaussian: } \quad \nu(s)=e^{b s}
\end{aligned}
$$

- Observed higher order harmonics:

$$
S(x, p) \propto \exp \left(\frac{p_{\mu} \mu^{\mu}(x)}{T(x)}\right) \delta\left(\tau, \tau_{f}\right) \frac{p_{\mu} \mu^{\mu}}{u_{0}}
$$

- Momentum distribution $N_{1}(p)$ and anisotropies $v_{n}\left(p_{t}\right)$ can be yielded
- Succesful fit!

What missing from the solution

- Real 3+1D solution
- Take into account the general spatial symmetry
- Still use Hubble-type velocity field
- Collective behaviour demand to generalized this
- Use of constant κ
- These problem can be solved in a hydrodynamical model

Ellipsoidal Buda-Lund model

Csanád, Csörgő, Lorstad Nucl.Phys.A742, 80-94 (2004)

- Final state parametrization
- Ellipsoidal symmetry in space and in velocity field (Hubble-type)

$$
s=\frac{r_{x}^{2}}{2 X^{2}}+\frac{r_{y}^{2}}{2 Y^{2}}+\frac{r_{z}^{2}}{2 Z^{2}} \quad u_{\mu}=\left(\gamma, r_{x} \frac{\dot{X}}{X}, r_{x} \frac{\dot{Y}}{Y}, r_{z} \frac{\dot{Z}}{Z}\right)
$$

- Thermal distribution is influented by spatial geometry

$$
\frac{1}{T}=\frac{1}{T_{0}}\left(1+a^{2} s\right)
$$

- Source function of the model

$$
S(x, p) d^{4} x=\frac{g}{(2 \pi)^{3}} \frac{p_{\mu} u^{\mu} H(\tau) d^{4} x}{e^{\frac{p \mu^{\mu} u^{\mu}-\mu}{T}}-s_{q}}
$$

$H(\tau)$ is a Gaussian function centered to τ_{0} with width $\Delta \tau^{2}$

Observables from ellipsoidal Buda-Lund model

- Saddle-point (SP) approximation \rightarrow source function can be integrated analitically

$$
S(x, p) d^{4} x=\frac{g}{(2 \pi)^{3}} \frac{p_{\mu} u^{\mu} H(\tau) d^{4} x}{e^{\frac{p_{\mu} u^{\mu}-\mu}{T}}+s_{q}} e^{R_{\mu \nu}^{-2}\left(x-x_{s}\right)^{\mu}\left(x-x_{s}\right)^{\nu}}
$$

- $R_{\mu \nu}=\left.\partial_{\mu} \partial_{\nu}\left(-\ln S_{0}(x, p)\right)\right|_{s}$, where $S_{0}(x, p)=\frac{H(\tau)}{B(x, p)+s_{q}}$
- The SP is definied by $\partial_{\mu}\left(-\ln S_{0}\left(x_{s}, p\right)\right)=0$
- $\int d^{4} x S(x, p)=N_{1}(p)$ can be calculated
- In transverse momentum space $N_{1}\left(p_{t}\right)$ distribution and $v_{2}\left(p_{t}\right)$ flow can be yielded

$$
v_{n}=\frac{\int_{0}^{2 \pi} d \alpha N_{1}(p) \cos (n \alpha)}{\int_{0}^{2 \pi} d \alpha N_{1}(p)}=\frac{I_{n}(w)}{l_{0}(w)}
$$

- In this model $v_{2 n+1}$ flows are vanishing

Generalized model

- Change to cylindrical coordinates: $(x, y, z) \rightarrow\left(r, \varphi, r_{z}\right)$
- Ellipsoidal scaling variable: $s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos (2 \varphi)\right)+\frac{r_{z}^{2}}{Z^{2}}$
- Modify this with ϵ_{3} to describe the triangular symmetry
- Trianular scale function:

$$
s=\frac{r^{2}}{R^{2}}\left(1+\epsilon_{2} \cos (2 \varphi)\right)+\frac{r^{3}}{R^{3}} \epsilon_{3} \cos (3 \varphi)+\frac{r_{z}^{2}}{Z^{2}}
$$

- The velocity field should be generalized too!
- Calculate from a potential:

$$
\Phi=\frac{r^{2}}{2 H}\left(1+\chi_{2} \cos (2 \varphi)\right)+\frac{r_{z}}{H_{z}}
$$

- Modify the potential:

$$
\Phi=\frac{r^{2}}{2 H}\left(1+\chi_{2} \cos (2 \varphi)\right)+\frac{r^{3}}{3 R^{2}} \chi_{3} \cos (3 \varphi)+\frac{r_{z}}{H_{z}}
$$

- The velocity fied can be calculated as $u_{\mu}=\left(\gamma, \partial_{x} \Phi, \partial_{y} \Phi, \partial_{z} \Phi\right)$

The velocity field

Figure : 1. $\chi_{2}=\chi_{3}=0$,
2. $\chi_{2}=0.2, \quad$ 3. $\chi_{2}=0.3$,
4. $\chi_{3}=0.3$,
5. $\chi_{3}=0.4$,
6. $\chi_{2}=0.3, \chi_{3}=0.3$

三 ,
$\equiv \quad \square 9 \mathrm{O}$

Observables from the generalized model

- Integrate the source function with the new scale function and the new velocity field
- SP approximation cannot be used as early
- Numerical calculation in progress but another approximation can be applied
- Let assume $\left(\frac{r_{i}}{H_{i}}\right)^{n}$ are vanishing if $n>2$
- The SP integral can be calculate analytically
- Yield the invariant momentum distribution, elliptical, triangular flow and HBT radii

Parameter dependence of the flows

Expected:

- v_{2} depend on ϵ_{2} and χ_{2}
- v_{2} not depend on ϵ_{3} and χ_{3}

v_{2} depend on ϵ_{2} and χ_{2} v_{3} not depend on ϵ_{2} and χ_{2}

ε_{3} dependence of v_{3}

Combination of the parameter

- v_{i} is determined by ϵ_{i} and χ_{i}, especially true for v_{3}
- There is no such a solutions found yet

Azimuthally sensitive HBT radii

- Explicit HBT radii can be yielded: $R_{i}^{2}=\frac{x_{i}^{2}}{2\left(\frac{E}{T_{0}} a^{2}-b\right)}$
- Not depend on asymmetry parameters or transverse angle
- Rotate system to out - side - long system with angle φ

Azimuthally sensitive HBT radii in 3D

$$
\begin{gathered}
R_{\text {out }}^{2}=\frac{R_{x}^{2}+R_{y}^{2}}{2}-\frac{R_{y}^{2}-R_{x}^{2}}{2} \cos (2 \varphi) \\
\mathrm{R}_{\text {out }}\left(\mathrm{p}_{\mathrm{t}}, \alpha\right)
\end{gathered}
$$

Azimuthally sensitive HBT radii in 3D

$$
\begin{gathered}
R_{\text {side }}^{2}=\frac{R_{x}^{2}+R_{y}^{2}}{2}+\frac{R_{y}^{2}-R_{x}^{2}}{2} \cos (2 \varphi) \\
R_{\text {side }}\left(\mathrm{p}_{\mathrm{t}}, \alpha\right)
\end{gathered}
$$

Azimuthally sensitive HBT radii in 3D

$$
R_{o, s}=\frac{R_{y}^{2}-R_{x}^{2}}{2} \sin (2 \varphi)
$$

Summary and outlook

- Generalized asymmetry implemented to a hydrodynamical solution
- Compared with data succesfully!
- Still Hubble-type velocity profile
- Generalized asymmetry implemented to a hydrodynamical model
- Extend the symmetry to the velocity field
- With a harsh approxmation $N_{1}\left(p_{t}\right), v_{2}\left(p_{t}\right), v_{3}\left(p_{t}\right)$ yielded
- More precise with numerical analyzis (in progress)
- $\epsilon_{2}, \epsilon_{3}$ and χ_{2}, χ_{3} dependence is important

Thank you for your attention!

