Analysis of Bose-Einstein Correlations at fixed multiplicities in the quantum optical approach

N. Suzuki, Matsumoto Univ., Japan M. Biyajima, Shinshu Univ., Japan

Outline

- 1.Introduction
- 2. Momentum densities at fixed multiplicity n
- 3. Formulation in the quantum optical approach
- 4.Data analysis

Multiplicity distribution

BEC (Qinv)

5.Summary

1.Introduction

Semi-inclusive events in pp collisions

$$pp \to n\pi^- + X$$

Normalized two-particle BEC function

$$\tilde{C}_{n}^{(2)}(\Delta y, \Delta \mathbf{p}_{T}) = \frac{nP(n)}{n-1}C_{n}^{(2)}(\Delta y, \Delta \mathbf{p}_{T}),
C_{n}^{(2)}(\Delta y, \Delta \mathbf{p}_{T}) = \frac{\int \int \int \rho_{n}^{(2)}(y_{1}, \mathbf{p}_{1T}; y_{1} + \Delta y, \mathbf{p}_{1T} + \Delta \mathbf{p}_{T})dy_{1} d^{2}\mathbf{p}_{1T}}{\int \int \int \rho_{n}^{(1)}(y_{1}, \mathbf{p}_{1T})\rho_{n}^{(1)}(y_{1} + \Delta y, \mathbf{p}_{1T} + \Delta \mathbf{p}_{T})dy_{1} d^{2}\mathbf{p}_{1T}}$$

- Multiplicity distribution P(n)
- Single-particle momentum density $ho_n^{(1)}(p)$
- Two-particle momentum density $\rho_n^{(2)}(p_1,p_2)$

Parameters on the BEC (source radii) are included in the multiplicity distribution.

Data Analysis CMS pp at 7 TeV $|\eta| < 2.4$

- Multiplicity distribution P(n)
- Two-particle BEC $C_n^{(2)}(Q_{\mathsf{inv}})$

2. Formulation in the quantum-optical approach

The n-particle momentum density in the QO approach

$$\rho_n(p_1, ..., p_n) = c_0 \left\langle |f(p_1)|^2 \cdots |f(p_n)|^2 \right\rangle_a,$$

$$f(p) = \sum_{i=1} a_i \phi_i(p) + f_c(p)$$

 $\phi_i(p)$: amplitude of the *i*th chaotic source c_0 : normalization factor

 $f_c(p)$: amplitude of the coherent source a_i : Gaussian random variable

Parenthesis $\langle F \rangle_a$ denotes the average of F over the complex random number a_i with a Gaussian weight:

$$\langle F \rangle_a = \prod_{i=1} \left(\frac{1}{\pi \lambda_i} \int \exp[-\frac{|a_i|^2}{\lambda_i}] d^2 a_i \right) F.$$

$$\rho_1(p_1) = c_0[r(p_1, p_1) + c(p_1, p_1)],$$

$$\rho_2(p_1, p_2) = c_0 \left\{ \rho(p_1) \rho(p_2) + |r(p_1, p_2)|^2 + 2 \operatorname{Re}[r(p_1, p_2) c(p_2, p_1)] \right\}$$

$$r(p_1, p_2) = \sum_i \lambda_i \phi_i(p_1) \phi_i^*(p_2), \quad c(p_1, p_2) = f_c(p_1) f_c^*(p_2)$$

Cumulant expansion of momentum densities

$$\rho_{1}(p_{1}) = c_{0}g_{1}(p_{1}),
\rho_{n}(p_{1}, \dots, p_{n}) = g_{1}(p_{1})\rho_{n-1}(p_{2}, \dots, p_{n})
\sum_{i=1}^{n-2} \sum_{j=1}^{n-2} g_{i+1}(p_{1}, p_{j_{1}}, \dots, p_{j_{i}})\rho_{n-i-1}(p_{j_{i+1}}, \dots, p_{j_{n-1}})
+c_{0}g_{n}(p_{1}, \dots, p_{n}), \quad n = 1, 2, \dots$$

$$g_{1}(p_{1}) = r(p_{1}, p_{1}) + c(p_{1}, p_{1}),
g_{2}(p_{1}, p_{2}) = r(p_{1}, p_{2})r(p_{2}, p_{1})
+c(p_{1}, p_{2})r(p_{2}, p_{1}) + r(p_{1}, p_{2})c(p_{2}, p_{1})$$

k-particle momentum density at fixed n $(n \ge k)$

$$\rho_n^{(k)}(p_1, \dots, p_k) = \frac{1}{(n-k)!}$$

$$\int \dots \int \rho_n(p_1, \dots, p_k, p_{k+1}, \dots, p_n) \frac{d^3 p_{k+1}}{E_{k+1}} \dots \frac{d^3 p_n}{E_n}$$

kth order cummulant $(n \ge k)$

$$g_n^{(k)}(p_1, \dots, p_k) = \frac{1}{(n-k)!}$$

$$\int \dots \int g_n(p_1, \dots, p_k, p_{k+1}, \dots, p_n) \frac{d^3 p_{k+1}}{E_{k+1}} \dots \frac{d^3 p_n}{E_n}$$

 $g(p_1, p_2, p_3)$

(i,j) = (2,3), (3,2)

cf. N.S. and M.Biyajima, Prog. Theor. Phys., 88(1992)609;

Phys. Rev. C **60**(1999)034903

T.Csörgő, et al., Eur. Phys. J. C 9(1999)275

Multiplicity distribution

$$P(n) = \frac{1}{n} \sum_{j=1}^{n} j g_j^{(0)} P(n-j), \quad P(0) = c_0$$

One-particle momentum density at fixed n

$$\rho_n^{(1)}(p) = \sum_{j=1}^n j g_j^{(1)}(p) P(n-j)$$

Two-particle momentum density at fixed n

$$\rho_n^{(2)}(p_1, p_2) = \sum_{j=1}^{n-1} (n-j)g_j^{(1)}(p_1)\rho_{n-j}^{(1)}(p_2) + \sum_{j=2}^n g_j^{(2)}(p_1, p_2)P(n-j)$$

$$g_{j}^{(0)} = \frac{1}{j} [\Delta_{j}^{(R)} + j \Delta_{j-1}^{(T)}], \quad j = 1, 2, \dots$$

$$g_{j}^{(1)}(p_{1}) = R_{j}(p_{1}, p_{1}) + \sum_{l=0}^{j-1} T_{l,j-l-1}(p_{1}, p_{1}), \quad j = 1, 2, \dots$$

$$g_{j}^{(2)}(p_{1}, p_{2}) = \sum_{l=1}^{j-1} R_{l}(p_{1}, p_{2}) R_{j-l}(p_{2}, p_{1})$$

$$+ \sum_{l=0}^{j-2} \sum_{m=0}^{l} \{T_{m,l-m}(p_{1}, p_{2}) R_{j-l-1}(p_{2}, p_{1}) + R_{j-l-1}(p_{1}, p_{2}) T_{m,l-m}(p_{2}, p_{1})\}, \quad j = 2, 3, \dots,$$

 $R_i(p_1,p_2)$ is made from the chaotic component only, and

 $T_{i,j}(p_1,p_2)$ contains the coherent component $c(p_l,p_m)$:

$$R_{j}(p_{1}, p_{2}) = \int r(p_{1}, k) R_{j-1}(k, p_{2}) \frac{d^{3}k}{\omega}, \quad \Delta_{j}^{(R)} = \int R_{j}(k, k) \frac{d^{3}k}{\omega}, \quad j = 1, 2, \dots$$

$$T_{j,l}(p_{1}, p_{2}) = \int R_{j}(p_{1}, k_{1}) c(k_{1}, k_{2}) R_{l}(k_{2}, p_{2}) \frac{d^{3}k_{1}}{\omega_{1}} \frac{d^{3}k_{2}}{\omega_{2}}, \quad \Delta_{j+l}^{(T)} = \int T_{j,l}(k, k) \frac{d^{3}k}{\omega}, j, l = 0, 1, \dots,$$

with $R_0(k_1, k_2) = \omega_1 \delta^3(k_1 - k_2)$.

2-1.Parametrization

Chaotic component

$$r(y_1,\mathbf{p}_{1T};y_2,\mathbf{p}_{2T})=p_{\mathrm{Sm}}\sqrt{\rho(y_1,\mathbf{p}_{1T})\rho(y_2,\mathbf{p}_{2T})}\,I(\Delta y,\Delta\mathbf{p}_{1T}),$$
 Coherent component

$$c(y_1, \mathbf{p}_{1T}; y_2, \mathbf{p}_{2T}) = (1 - p_{sm}) \sqrt{\rho(y_1, \mathbf{p}_{1T})\rho(y_2, \mathbf{p}_{2T})},$$

$$\rho(y_1, \mathbf{p}_{1T}) = \langle n_0 \rangle \sqrt{\frac{\pi}{\alpha}} \frac{\pi}{\beta} \exp[-\alpha y_1^2 - \beta \mathbf{p}_{1T}^2],$$

$$I(\Delta y, \Delta \mathbf{p}_T) = \exp[-\gamma_L (\Delta y)^2 - \gamma_T (\Delta \mathbf{p}_T)^2],$$

$$\Delta y = y_2 - y_1, \quad \Delta \mathbf{p}_T = \mathbf{p}_{2T} - \mathbf{p}_{1T}.$$

 $p_{\rm sm} = r(p_i,p_i)/\rho(p_i)$: chaoticity parameter in the semiinclusive events ($p_{\rm sm} = {\rm const.}$)

6 parameters :
$$p_{\rm sm}$$
, $\langle n_0 \rangle$, $lpha$, eta , γ_L and γ_T .

$$\langle n_0 \rangle$$
 satisfys, $P(1) = \langle n_0 \rangle P(0)$.

$$R_1(y_1, \mathbf{p}_{1T}; y_2, \mathbf{p}_{2T}) = r(y_1, \mathbf{p}_{1T}; y_2, \mathbf{p}_{2T}),$$

 $T_{0,0}(y_1, \mathbf{p}_{1T}; y_2, \mathbf{p}_{2T}) = c(y_1, \mathbf{p}_{1T}; y_2, \mathbf{p}_{2T})$

For j, l = 1, 2, ...

$$R_{j}(y_{1}, \boldsymbol{p}_{1T}, y_{2}, \boldsymbol{p}_{2T}) = N_{j} \exp[-A_{j}(y_{1}^{2} + y_{2}^{2}) + 2C_{j}y_{1}y_{2}]$$

$$\times \exp[-U_{j}(\boldsymbol{p}_{1T}^{2} + \boldsymbol{p}_{2T}^{2}) + 2W_{j}\boldsymbol{p}_{1T}\boldsymbol{p}_{2T}]$$

$$R_{j+l}(y_{1}, \boldsymbol{p}_{1T}, y_{2}, \boldsymbol{p}_{2T}) = \int R_{j}(y_{1}, \boldsymbol{p}_{1T}, y, \boldsymbol{p}_{T})R_{l}(y, \boldsymbol{p}_{T}, y_{2}, \boldsymbol{p}_{2T})dyd^{2}\boldsymbol{p}_{T}$$

Recurrence equations

$$\begin{split} N_{j+l} &= \frac{\pi^{3/2}}{\sqrt{A_j + A_l}(U_j + U_l)} N_j N_l \\ A_{j+l} &= A_j - \frac{C_j^2}{A_j + A_l} = A_l - \frac{C_l^2}{A_j + A_l}, \quad C_{j+l} = \frac{C_j C_l}{A_j + A_l} \\ U_{j+l} &= U_j - \frac{W_j^2}{U_j + U_l} = U_l - \frac{W_l^2}{U_j + U_l}, \quad W_{j+l} = \frac{W_j W_l}{U_j + U_l}. \\ N_1 &= p_{\text{sm}} \langle n_0 \rangle \frac{\alpha^{1/2} \beta}{\pi^{3/2}}, \quad A_1 &= \frac{\alpha}{2} + \gamma_L, \quad C_1 = \gamma_L, \quad U_1 = \frac{\beta}{2} + \gamma_T, \quad W_1 = \gamma_T. \end{split}$$

These recurrence equations can be solved.

$$A_{j} = \frac{r_{2}(1-u)}{2} \frac{1+u^{j}}{1-u^{j}}, \quad C_{j} = r_{2}(1-u) \frac{u^{j/2}}{1-u^{j}}, \quad j = 1, 2, ...,$$

$$U_{j} = \frac{t_{2}(1-v)}{2} \frac{1+v^{j}}{1-v^{j}}, \quad W_{j} = t_{2}(1-v) \frac{v^{j/2}}{1-v^{j}}, \quad j = 1, 2, ...,$$

$$N_{j} = \frac{\sqrt{r_{2}} t_{2}}{\pi^{3/2}} \xi^{j} \{ \frac{1-u}{1-u^{j}} \}^{1/2} \frac{1-v}{1-v^{j}}, \quad j = 1, 2, ...,$$

$$r_{1} = \alpha \frac{1 + 2h_{L} - \sqrt{1 + 4h_{L}}}{2}, \quad r_{2} = \alpha \frac{1 + 2h_{L} + \sqrt{1 + 4h_{L}}}{2}, \quad h_{L} = \gamma_{L}/\alpha,$$

$$t_{1} = \beta \frac{1 + 2h_{T} - \sqrt{1 + 4h_{T}}}{2}, \quad t_{2} = \beta \frac{1 + 2h_{T} + \sqrt{1 + 4h_{T}}}{2}, \quad h_{T} = \gamma_{T}/\beta.$$

$$u = r_{1}/r_{2} = \left(2h_{L}/(1 + 2h_{L} + \sqrt{1 + 4h_{L}})\right)^{2}, \quad 0 < u < 1,$$

$$v = t_{1}/t_{2} = \left(2h_{T}/(1 + 2h_{T} + \sqrt{1 + 4h_{T}})\right)^{2}, \quad 0 < v < 1.$$

$$\xi = \frac{p_{\text{sm}}\langle n_0 \rangle \sqrt{\alpha} \beta}{\sqrt{r_2} t_2} = (1 - \sqrt{u})(1 - \sqrt{v})^2 p_{\text{sm}}\langle n_0 \rangle,$$

$$A_0 = \sqrt{1 - u} (1 - v)(1 - p_{\text{sm}})\langle n_0 \rangle.$$

Cf. T.Csörgő and J.Zimanyi, Phys. Rev. Lett., **80**(1998)916, N.S., M.Biyajima and T.Mizoguchi, Phys. Part. Nucl. Lett., **8**(2011)1007.

2-2. Multiplicity distribution in the QO approach

$$P(n) = \frac{1}{n} \sum_{j=1}^{n} j g_{j}^{(0)} P(n-j) = \frac{1}{n} \sum_{j=1}^{n} (\Delta_{j}^{(R)} + j \Delta_{j-1}^{(T)}) P(n-j),$$

$$\Delta_{j}^{(R)} = \frac{\xi^{j}}{(1-u^{j/2})(1-v^{j/2})^{2}}, \quad \Delta_{j-1}^{(T)} = \frac{A_{0} \xi^{j-1}}{\sqrt{1-u^{j}}(1-v^{j})}$$

The MD is approximately given by the Glauber-Lachs formula.

$$\Delta_j^{(R)} \approx \xi^j, \ \Delta_{j-1}^{(S)} \approx A_0 \xi^{j-1} \to P(n) = (1-\xi)\xi^n \exp[-A_0/(1-\xi)] L_n(A_0/\xi)$$

KNO scaling function

$$\phi(z) = \frac{1}{p_{\text{in}}} \exp[-\frac{z+1-p_{\text{in}}}{p_{\text{in}}}] I_0(\frac{2}{p_{\text{in}}} \sqrt{(1-p_{\text{in}})z}).$$

$$\xi = (1 - \sqrt{u})(1 - \sqrt{v})^{2} p_{\text{sm}} \langle n_{0} \rangle = \frac{p_{\text{in}} \langle n \rangle}{1 + p_{\text{in}} \langle n \rangle}, \qquad u = (\frac{2h_{L}}{1 + 2h_{L} + \sqrt{1 + 4h_{L}}})^{2},$$

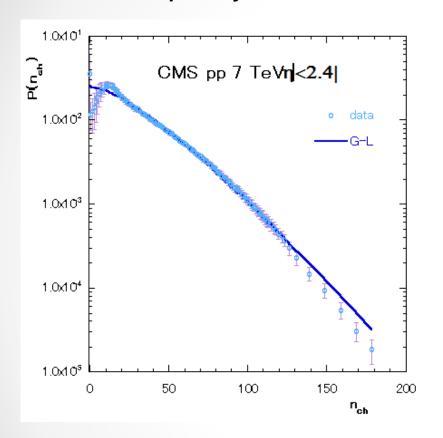
$$A_{0} = \sqrt{1 - u} (1 - v)(1 - p_{\text{sm}}) \langle n_{0} \rangle = \frac{(1 - p_{\text{in}}) \langle n \rangle}{(1 + p_{\text{in}} \langle n \rangle)^{2}} \qquad v = (\frac{2h_{L}}{1 + 2h_{L} + \sqrt{1 + 4h_{L}}})^{2}$$

4 parameters, p_{sm} , $\langle n_0 \rangle$, h_L and h_T , are contained in the MD.

cf. N.S., M. Biyajima and T. Mizoguchi, Phys. Part. Nucl. Lett., **8**(2011)1007

3. Data analysis

3-1. Multiplicity distribution



 $p+p \rightarrow n_{ch}+X$, $|\eta|<2.4$ CMS Collaboration, V. Khachatryan, et al, J. High Energy Phys. ${\bf 01}(2011)079$

2 parameters, $p_{\rm in}$ and $\langle n \rangle$ (= $\frac{\langle n_{\rm ch} \rangle}{2}$) are contained in the KNO scaling function.

paremeters	estimated value
p_{in}	0.514 ± 0.008
$\langle n_ch angle$	30.48 ± 0.12
χ^2/N_{dof}	110.5/(126-2)

Estimated values of p_{in} and $\langle n \rangle$ give 2 constraints among 4 parameters, p_{sm} , $\langle n_0 \rangle$, $h_L = \gamma_L/\alpha$ and $h_T = \gamma_T/\beta$.

3-2. Analysis of BEC

CMS collaboration JHEP05(2011)029

pp 7 TeV, $|\eta| < 2.4$, pT>200 MeV/c variable : Qinv

Range of
$$k_T$$
 (GeV/c): $k_T = (0.1, 0.3), (0.3, 0.5), (0.5, 1.0),$

where
$$k_T=|oldsymbol{k}_T|$$
, $oldsymbol{k}_T=(oldsymbol{p}_{1T}+oldsymbol{p}_{2T})/2$

$$\tilde{C}_{n}^{(2)}(Q_{\mathsf{inv}}, \boldsymbol{k}_{T}) = \frac{nP(n)}{n-1} \frac{\int \rho_{n}^{(2)}(y_{1}, \boldsymbol{p}_{1T}; y_{1} + \Delta y, \boldsymbol{p}_{1T} + \Delta \boldsymbol{p}_{T}) dy_{1} d^{2} \Delta \boldsymbol{p}_{T}|_{k_{T} \approx c}}{\int \rho_{n}^{(1)}(y_{1}, \boldsymbol{p}_{1T}) \rho_{n}^{(1)}(y_{1} + \Delta y, \boldsymbol{p}_{1T} + \Delta \boldsymbol{p}_{T}) dy_{1} d^{2} \Delta \boldsymbol{p}_{T}|_{k_{T} \approx c}}$$

(i) Change variable from Δy to Q_{inv}

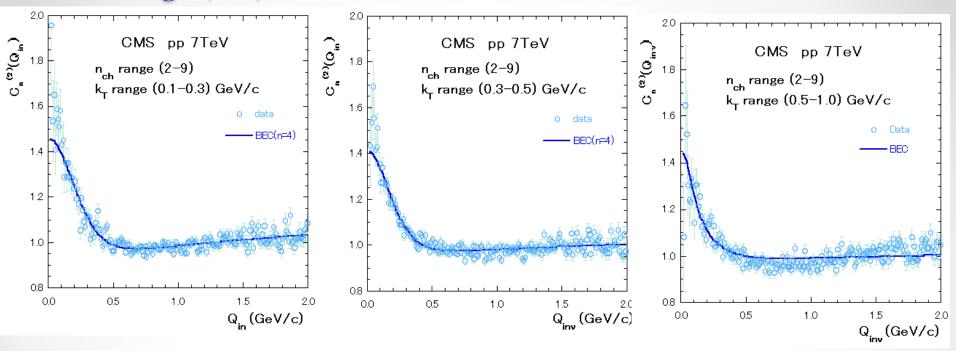
$$\begin{split} Q_{\rm inv}^2 &= Q_{\rm L}^2 + Q_{\rm T}^2 \approx 2 \langle m_{\rm T}^2 \rangle (\cosh \Delta y - 1) + \Delta p_{\rm T}^2, \\ \Delta y &\approx \ln(a + \sqrt{a^2 - 1}\,) \end{split} \qquad a = \frac{Q_{\rm inv}^2 - \Delta p_{\rm T}^2}{2 \langle m_{\rm T}^2 \rangle} + 1 \end{split}$$

If $\Delta p_{\rm T}^2 << 1$, we can approximate

$$a_0 = rac{Q_{
m inv}^2}{2\langle m_{
m T}^2 \rangle} + 1$$
 $\Delta y pprox \ln(a_0 + \sqrt{a_0^2 - 1}\,) - rac{\Delta p_{
m T}^2}{2\langle m_T^2 \rangle} \sqrt{a_0^2 - 1}, \qquad \langle m_{
m T}^2
angle = 0.14^2 + 0.3^2$ $(\Delta y)^2 pprox \left\{ \ln(a_0 + \sqrt{a_0^2 - 1}\,)
ight\}^2 - rac{\ln(a_0 + \sqrt{a_0^2 - 1}\,)}{\langle m_T^2 \rangle \sqrt{a_0^2 - 1}} \Delta p_{
m T}^2$

(ii) Change variables from $p_{1 op}$, $\Delta p_{ op}$ to $k_{ op}$, $\Delta p_{ op}$, and integrate over $\Delta p_{ op}$. $p_{1T} = k_{T} - \Delta p_{T}/2, \quad (p_{2T} = k_{T} + \Delta p_{T}/2)$

Nch range (2-9)

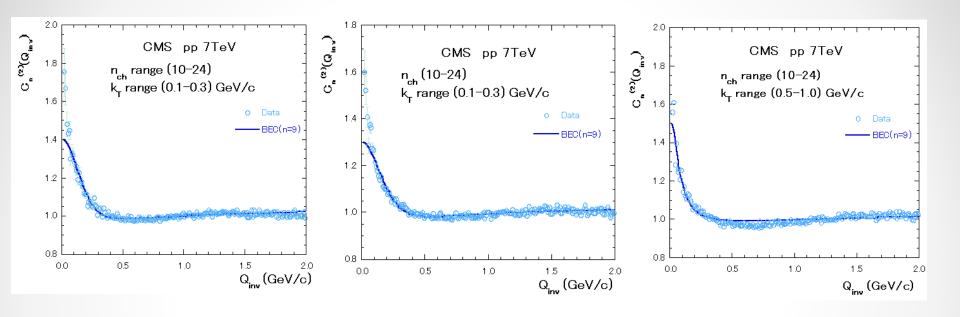


Estimated parameters from $C_n^{(2)}(Q_{\text{inv}})$, $n_{\text{ch}} = (2-9)$

$k_{T} \; (GeV/c)$	0.10-0.30	0.30-0.50	0.50-1.00
p_{sm}	0.965 ± 0.002	0.978 ± 0.002	0.980 ± 0.004
$ar \langle n_0 angle$	3.45 ± 0.17	6.21 ± 0.50	7.31 ± 2.05
α	0.334 ± 0.028	0.303 ± 0.038	0.203 ± 0.037
eta	33.1 ± 1.6	5.05 ± 0.34	2.11 ± 0.21
\dot{h}_L	2.47 ± 0.32	2.38 ± 0.40	2.19 ± 0.94
h_T^-	0.427 ± 0.025	1.43 ± 0.13	1.94 ± 0.73
χ^2/N_{dof}	322.5/(198-4)	529.1/(198-4)	323.5/(198-4)

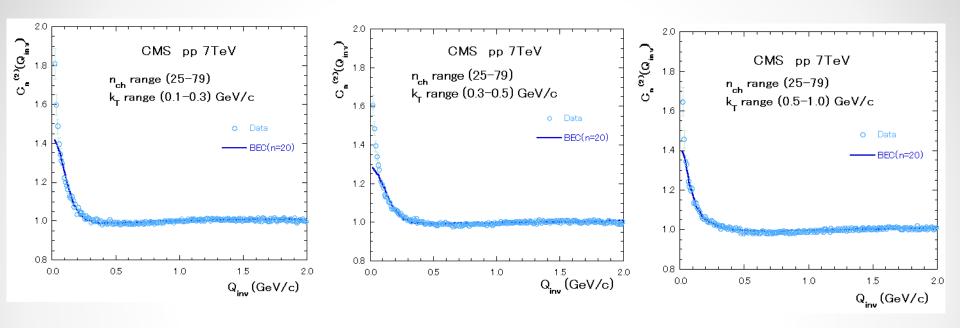
$\overline{N_{ch}}$	2-9	10-24	25-79
$n(\pi^-)$	4	9	20

Nch (10-24)

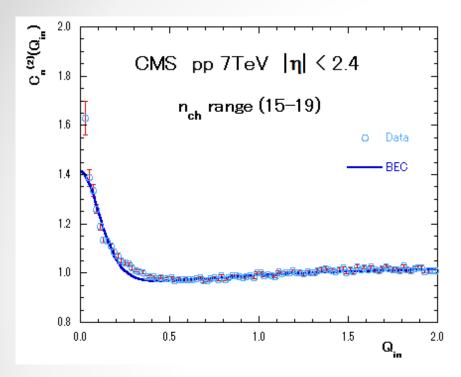


Estimated p	arameters from	ກ $C_n^{(2)}(Q_{inv})$, \imath	$n_{\rm ch} = (10 - 24)$
$k_{\rm T}$ (GeV/c)	0.10-0.30	0.30-0.50	0.50-1.00
p_{sm}	0.979 ± 0.001	0.982 ± 0.001	0.981 ± 0.001
$\langle n_0 angle$	6.99 ± 0.25	8.92 ± 0.32	8.07 ± 0.41
α	0.294 ± 0.018	0.363 ± 0.018	0.225 ± 0.007
eta	27.9 ± 1.1	5.57 ± 0.19	2.25 ± 0.06
\dot{h}_L	6.22 ± 0.48	3.24 ± 0.23	2.37 ± 0.10
h_T^-	0.942 ± 0.032	2.13 ± 0.08	2.16 ± 0.09
χ^2/N_{dof}	322.5/(198-4)	529.1/(198-4)	323.5/(198-4)

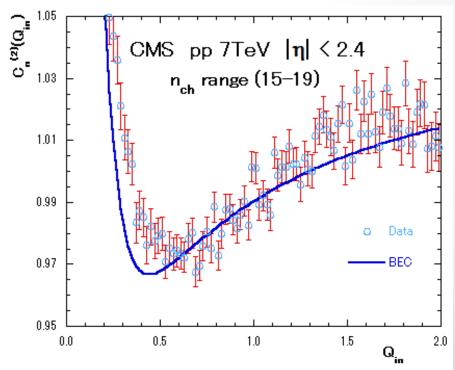
nch (25-79)

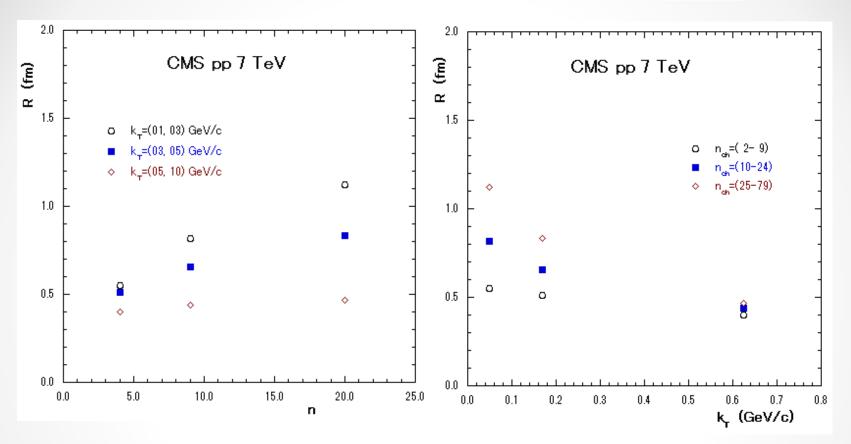


Estimated p	oarameters from	n $C_n^{(2)}(Q_{inv})$,	$n_{\rm ch} = (25 - 79)$
$k_{\rm T}$ (GeV/c)	0.10-0.30	0.30-0.50	0.50-1.00
p_{sm}	0.986 ± 0.001	0.989 ± 0.001	0.985 ± 0.001
$\langle n_0 \rangle$	13.7 ± 0.6	17.9 ± 0.8	11.1 ± 0.3
α	0.265 ± 0.021	0.256 ± 0.018	0.184 ± 0.003
eta	$22.4{\pm}1.2$	5.36 ± 0.23	1.87 ± 0.03
\dot{h}_L	13.1 ± 0.9	7.41 ± 0.62	3.25 ± 0.15
h_T	1.76 ± 0.09	3.63 ± 0.13	2.92 ± 0.10
χ^2/N_{dof}	322.5/(198-4)	529.1/(198-4)	323.5/(198-4)



p_{sm}	0.984
$\langle n_{0} angle$	9.88
α	0.584
$oldsymbol{eta}$	6.85
\dot{h}_L	3.13
h_T^-	2.52
χ^2/N_{dof}	349.6/(100-4)





$$R = \sqrt{\gamma_L/\langle m_T^2 \rangle}$$
, $\gamma_L = \alpha \times h_L$
 $\langle m_T^2 \rangle = 0.14^2 + 0.3^2 = 0.110 \quad (GeV/c)^2$

Source radius R increases with multiplicity n, and decreases with $k_{\rm T}$.

•

5. Summary

- \diamondsuit The MD and $C_n^{(2)}(Q_{\rm inv})$ measured in pp collisons in $|\eta| < 2.4$ at 7 TeV by the CMS collaboration is analyzed by the model with 6 parameters, $p_{\rm sm}$, $\langle n_0 \rangle$, α , β , γ_L and γ_T in the QO approach.
- \diamondsuit From the analysis, the chaoticity parameter p_{in} in the inclusive events and the average charged multiplicity $\langle n_{ch} \rangle$ are estimated.
- \diamondsuit p_{in} and $\langle n_{ch} \rangle$ /2 gives two constraints among parameters, p_{sm} , $\langle n_0 \rangle$, $h_L = \gamma_L/\alpha$ and $h_T = \gamma_T/\beta$.
- \Diamond Source raius R increases with multiplicity n, and decreas with k_{T} . Source radius R in fm is within the range (from 0.403 to 1.13).