
Rucio Pig 
Use Cases & Examples

IT Analytics WG
10.12.2014



Data sources

● Apache Server / Rucio Daemon logs
○ read directly from log file and continuously streamed 

via Flume to HDFS
○ simple text log files

● Traces
○ send to ActiveMQ broker and continuously streamed 

via Flume to HDFS
○ text file with one JSON encoded dictionary per trace

● Oracle Dumps:
○ daily Sqoop dumps of most important tables to 

HDFS
○ bz2 compressed, tab-separated text files 2



Daily Data volume

● Logs: ~ 23 GB
● Traces (depends on load): 

○ 6.000.000 entries
○ ~5 GB

● DB dumps:
○ DIDs: 550.000.00 entries
○ Rules: 7.500.000 entries
○ Replicas: 690.000.000 entries
○ Dataset Locks: 8.000.000 entries
○ RSEs: 700 entries
○ Total Volume: ~16GB bz2 compressed

3



Use cases

● log files:
○ storage and simple cat / grep operations
○ (log file analysis)

● traces:
○ update of last access time of files/datasets
○ popularity reports

● DB dumps:
○ daily reports for operations / site admins for 

consistency checks
○ file replicas / unique files per storage endpoint
○ primary / custodial dataset replicas
○ number of replicas per dataset / last access times

4



Example

● Generate a list of unique replicas of a file for 
all storage endpoints
○ Filter all files which only have one replica
○ split for (non-) deterministic storage endpoints
○ for the deterministic storage endpoints generate the 

path with a UDF
○ merge everything together again
○ join with rse table to get storage endpoint names
○ store back onto HDFS in multiple files. Split per 

storage endpoint 
5



Input
rses = LOAD '/user/rucio01/dumps/$CURRENT_DAY/rses/part-m-*.bz2' USING PigStorage('\t') 
AS (
 id: chararray,
 rse: chararray,
 rse_type: chararray,
 deterministic: chararray,
 volatile: chararray
);

replicas = LOAD '/user/rucio01/dumps/$CURRENT_DAY/replicas/part-m-*.bz2' USING 
PigStorage('\t') AS (
 scope: chararray,
 name: chararray,
 rse_id: chararray,
 bytes: long,
 state: chararray,
 lock_cnt: long,
 adler32: chararray,
 created_at: chararray,
 accessed_at: chararray,
 path: chararray
);

6



Filter non-unique replicas
-- group per file and count the number of replicas
group_reps = GROUP d_reps BY (scope, dsn);
count_reps = FOREACH group_reps GENERATE group.scope, group.dsn, d_reps, 
COUNT(d_reps) as num_reps;

-- filter out all non-unique replicas
filter_unique = FILTER count_reps BY num_reps == 1;

-- there is only one entry left in bag, so flatten it
flatten_reps = FOREACH filter_unique GENERATE FLATTEN(d_reps);

-- just for convenience
unique_reps = FOREACH flatten_reps GENERATE d_reps::rse_id as rse_id, 
d_reps::scope as scope, d_reps::dsn as dsn, d_reps::checksum as checksum, 
d_reps::fsize as fsize, d_reps::creationdate as creationdate, d_reps::path 
as path;

7



Generate path for non-deterministic 
RSEs
-- get all replicas on deterministic rses
filter_det = FILTER unique_reps BY (path is null);

-- there shouldn't be any, but better safe than sorry
filter_dsn_scopes = FILTER filter_det BY (dsn is not null and scope is not 
null);

-- create the path from scope and dsn with udf
get_path = FOREACH filter_dsn_scopes GENERATE rse_id, scope, dsn, 
checksum, fsize, creationdate, rucioudfs.GETPATH(scope, dsn) as path;

-- get all replicas on non-deterministic rses
filter_nondet = FILTER unique_reps BY path is not null;

-- now all replicas have a path, so put them together again
union_det_nondet = UNION get_path, filter_nondet;

8



GETPATH UDF
public class GETPATH extends EvalFunc<String>
{
    public String exec(Tuple input) throws IOException {
        if (input == null || input.size() == 0)
            return null;
        try{
            String scope = (String)input.get(0);
            String name = (String)input.get(1);
            MessageDigest md = MessageDigest.getInstance("MD5");
            md.update(scope.concat(":").concat(name).getBytes());
            byte[] digest = md.digest();

            String md5_1 = String.format("%02x", digest[0] & 0xff);
            String md5_2 = String.format("%02x", digest[1] & 0xff);

            String corrected_scope = scope;
            if (corrected_scope.startsWith("user") || corrected_scope.startsWith("group")) {
                corrected_scope.replace(".", "/");
            }
            return corrected_scope.concat("/").concat(md5_1).concat("/").concat(md5_2).concat
("/").concat(name);
        }catch(Exception e){
            throw WrappedIOException.wrap("Caught exception processing input row ", e);
        }
    }
} 9



Get RSE names and store
-- read in the rses
d_rses = FOREACH rses GENERATE id as rse_id, rse;

-- join replicas and rses to get the rse name
join_reps_rses = JOIN union_det_nondet BY rse_id, d_rses BY rse_id;

-- generate the final output schema
joined_output = FOREACH join_reps_rses GENERATE d_rses::rse, 
union_det_nondet::scope, union_det_nondet::dsn, union_det_nondet::
checksum, union_det_nondet::fsize, union_det_nondet::creationdate, 
union_det_nondet::path;

-- store on disk, split result into one file per rse
STORE joined_output INTO 'reports/$CURRENT_DAY/unique_replicas_per_rse' 
USING org.apache.pig.piggybank.storage.MultiStorage
('reports/$CURRENT_DAY/unique_replicas_per_rse', '0', 'bz2', '\\t');

10



Overall volume and 

● Input:
○ replica table: ~12 GB
○ rse table: 15 KB

● Output:
○ ~600 bz2 files
○ ~9 GB

● Runtime:
○ ~30 minutes

11



Ad-hoc analysis (last week)

Find set difference between two large tables
● both tables

○ ~600 million rows each, 2x11GB bz2 (2x90GB raw)
● sqoop dump from Oracle

○ ~4 hours, highly skewed parallelism
● time to write Pig script with full outer join and 

validate on sample
○ ~20 minutes

● time to run Pig script on full dataset
○ ~10 minutes

12



Obsolete use case: DQ2 Accounting

Same workflow
● retrieve pre-cooked dump from Oracle

○ 4GB, 20 minutes
● run dump through 35 different Pig scripts to 

generate different summaries and reports
○ 2GB, 30 minutes
○ regex_extract major source of CPU load
○ optimising regex increased runtime down from 6 

hours

13


