

Enabling Grids for E-sciencE

Advances in Grid Operations

Dr. Nicholas Thackray CHEP 2009, Prague

But what is grid operations?

Enabling Grids for E-sciencE

- Infrastructures
 - Production service
 - Pre-production service
 - Pilot services
- Procedures
 - Site SLAs
 - Middleware release process
 - Site registration
 - VO registration
 - etc.
- Communications
 - Daily, weekly, bi-weekly, meetings for all stakeholders
- Grid security
- Interoperations
 - At all levels

- User support
- Operations tools
 - Operations Portal
 - GOC database
 - Monitoring
 - Dashboards
 - SAM
 - Gstat
 - GridView
 - etc.
 - Trouble ticketing system (GGUS)
 - Accounting
- ... and much more!

In a nutshell

The goal of grid operations is the provisioning of a large-scale, production grid infrastructure that interoperates at many levels, offering reliable services to a wide range of applications

So, a 3 point check list

Enabling Grids for E-sciencE

- 265 sites
- 600 PB of storage

All without any increase in the staffing levels of operations

- 270,000 jobs / day

? Reliable services

Room for improvement?

End of 2007: where was there room for improvements?

- Reliability of "user services"
- Handling of grid problems
- Communications with users and sites
- Security
- Accounting
- Structure of grid operations

Reliability of "user services"

Handling of grid problems

Communications with

Accounting

Structure of grid opel

Reliability of "User Services"

- <u>User Service</u>: the whole chain, not just individual middleware services
 - Encouraged improvements in site reliability
 - Calculate and publish site availability & reliability figures
 - Implemented site Service Level Agreement (SLA)
 - Improving the VO ID cards; so sites know what their VOs expect
 - Efforts to improve quality of the middleware reaching production
 - Constant, incremental improvements to middleware release process
 - Reformation of pre-production service (PPS)
 - No more "2 week delay"
 - Make it useful for the VOs

Reliability of "User Services"

- Requested features to reduce number of SPoFs and to survive glitches
 - Service discovery via Information System
 - Ability to put each middleware service on a cluster
 - Caching, retries, etc.
- Requests to middleware developers for improvements to make debugging easier (logging, error messages)
- Robustness of core middleware service instances
 - Ensuring high availability instances in all regions; e.g. top-level BDII
- Commissioned interoperability testbed (EGEE / OSG)
 - To catch middleware updates that break interoperability

Reliability of "User Services"

- Improvements for the future
 - Staged rollouts of middleware; on representative sites
 - Roll-back mechanism for failed middleware updates
 - Set the bar higher for availability and reliability
 - Add more peer grids to the interoperability testbed

- Communications
- Security
- Accounting
- Structure of grid

- Enabling Grids for E-science
- Need to spot the problems as quickly as possible...
 - Service Availability Monitoring (SAM) improvements:
 - Software release process for SAM improved
 - Monitoring of the monitoring
 - Monitoring of core grid services (WMS, top BDIIs, etc.)
 - Site level monitoring: **Nagios**
 - YAIM-installable package and auto-configures
 - Standard set of probes provided
 - SAM tests available to site Nagios through Active-MQ[®] message bus
 - Now: ~40 instances monitoring ~150 sites

INFN-T1 (Bologna, italy) INFN-ROMA1 (Rome, italy)

Enabling Grids for E-sciencE

Experiment dashboards

Site dashboard

GridMap

jobs per site

- ...and act on them rapidly
 - Improvements in the trouble ticketing tool (GGUS) and procedures
 - Ability for users to route their tickets directly to sites
 - Ability for users to escalate tickets
 - Alarm and team tickets
 - LHCOPN support
 - Regular reviews of metrics for 1st, 2nd & 3rd line support
 - Periodic testing of ALARM GGUS tickets to WLCG tier-1 sites
 - Escalation reports to catch stagnating tickets

- Improvements for the future
 - Multi-Level Monitoring (MLM):
 An integrated, holistic approach to grid infrastructure monitoring
 - GStat 2
 - Grid Configuration Monitoring (GCM)
 - a.k.a. The job wrapper tests

- Handling of grid problems
- Communications with users and sites
- Security
- Accounting
- Structure of grid operations

Communications

Introduced deily MICC arid energtions recetions

- Introduced daily WLCG grid operations meetings
- Wiki entries created from the results of solved tickets
- GOCDB downtimes appear automatically in site Nagios instances
- Improved the site/service downtime notification
 - Spamming → user defined RSS feeds
- GOC DB: Can now enter downtimes for grid operations tools

Communications

- Improvements for the future
 - A graphical calendar view of site downtimes
 - a la ATLAS and LHCb
 - Automatic notification of changes to VO ID cards

- Reliability of "user services"
- Handling of grid problems
- Communications with users and sites

- Accounting
- Structure of grid operations

Security

- Distributed security operations
 - Team's activities also distributed and lead by the regions
- Security drills
 - Now showing improved results from the sites to respond to security incidents
- Improved collaboration with peer grids and NRENs
- Comprehensive security training events organized during EGEE conferences

Security

Improvements for the future

- More structured information flow to manage cross-grid security incidents
- Integration of the NRENs in the incident response process
- Implementing metrics to measure the quality of the response from the sites
- Reviewing security training material, including a new website
- Implementing additional security monitoring tools in collaboration with the Operations Automation Team (OAT)

Structure of grid operations

Recent improvements:

- Scalability: Allowing sites to publish backlogs in chunks so as not to overload memory
- SAM critical tests used to highlight sites not publishing data
- DGAS publishing changed from R-GMA to direct db insertion
- SGAS started publishing accounts for NDGF tier-1
- The publishing of FQAN of jobs was rolled out
 - Developed in 2007, 84% of sites now publishing
- The publishing of UserDN was rolled out
 - But not enabled due to lack of policy covering legal issues

Enabling Grids for E-sciencE

Structure of grid operations

Structure of Grid Operations

Enabling Grids for E-science

Recent improvements

 "Regionalization": to make Regional Operations Centres (ROC) (and by further distribution NGIs) have independent infrastructures so that at the end of the EGEE III project they can function independently (April 2010)

Improvements for the future

- Completion of the regionalization
- Much more automation of tools, monitoring, etc.
- A common strategy and architecture for how the operations tools will work together
 - Introduction of Active-MQ[®] messaging system
- This is all being coordinated by a dedicated working group: the Operations Automation Team (OAT)

Acknowledgements

Enabling Grids for E-science

- John Gordon (RAL)
- Romain Wartel (CERN)
- Gilles Mathieu (RAL)
- John Shade (CERN)
- Cyril L'Orphelin (IN2P3)
- James Casey (CERN)
- Jamie Shiers (CERN)
- Torsten Antoni (FZK)
- Maria Dimou (CERN)
- Diana Bosio (CERN)
- David Collados (CERN)
- Hélène Cordier (IN2P3)

