
Migration of ATLAS PanDA to CERN

Graeme Andrew Stewart1, Alexei Klimentov2, Birger Koblitz3,
Massimo Lamanna3, Tadashi Maeno2, Pavel Nevski2, Marcin Nowak2,
Pedro Emanuel De Castro Faria Salgado2, Torre Wenaus2

1 Department of Physics and Astronomy, University of Glasgow, University Avenue, Glasgow,
G12 8QQ, UK
2 Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
3 European Organization for Nuclear Research, CERN CH-1211, Genève 23, Switzerland

E-mail: g.stewart@physics.gla.ac.uk

Abstract. The ATLAS Production and Distributed Analysis System (PanDA) is a key
component of the ATLAS distributed computing infrastructure. All ATLAS production jobs,
and a substantial amount of user and group analysis jobs, pass through the PanDA system,
which manages their execution on the grid. PanDA also plays a key role in production task
definition and the data set replication request system. PanDA has recently been migrated from
Brookhaven National Laboratory (BNL) to the European Organization for Nuclear Research
(CERN), a process we describe here.

We discuss how the new infrastructure for PanDA, which relies heavily on services provided
by CERN IT, was introduced in order to make the service as reliable as possible and to allow
it to be scaled to ATLAS’s increasing need for distributed computing.

The migration involved changing the backend database for PanDA from MySQL to Oracle,
which impacted upon the database schemas. The process by which the client code was optimised
for the new database backend is discussed. We describe the procedure by which the new database
infrastructure was tested and commissioned for production use.

Operations during the migration had to be planned carefully to minimise disruption
to ongoing ATLAS offline computing. All parts of the migration were fully tested before
commissioning the new infrastructure and the gradual migration of computing resources to
the new system allowed any problems of scaling to be addressed.

1. Introduction
The Production and Distributed Analysis system for ATLAS computing was developed from
2005 by US ATLAS[1] to address the need for ‘petabyte’ grid computing within the ATLAS
Experiment[2] based at CERN. The success of PanDA led to its adoption at the end of 2007 as
the unified production system for ATLAS across the OSG, EGEE and NDGF grids, a process
recently completed by the final integration of NDGF resources into PanDA through the ‘ARC
Control Tower’.

The growing importance of PanDA to ATLAS offline computing led to the decision in autumn
2008 to migrate the system’s infrastructure from Brookhaven National Laboratory to CERN.
This migration took place over a long period, starting in November 2008 and finally completing
in May 2009. The migration was able to proceed over this long time because the component
based architecture of PanDA, which is described in §2, allowed an evolutionary approach to be
taken. Firstly a PanDA infrastructure was put in place at CERN, which took advantage of



CERN’s Fabric, Infrastructure and Operations’ (FIO) services (§3). This allowed, firstly, the
PanDA monitor to be setup at CERN. This was followed by the first database migration, the
Task Request database (§4.2). This was also the first database which was migrated from MySQL
to Oracle. Finally, the migration of the PanDA server began (§4.3), with at first just two clouds
migrating to the new CERN Oracle setup. Then further clouds were added, gradually increasing
the load on the new infrastructure until the migration was complete (§4.3.3).

2. PanDA Architecture
The architecture of PanDA is based around a central job queue, which holds information about
all the jobs which the system wishes to be run at any point in time. For ATLAS production,
PanDA receives these jobs from a higher component in the ATLAS production system, the
Production Database, or ProdDB[3]. Once PanDA has information about jobs to be run it finds
the input data for these jobs from the ATLAS Distributed Data Management system, DDM[4].
If the brokering algorithm in PanDA decides the job should be run at a site which does not
currently hold the data, it uses DDM to move the data to the site before the job will be run.
Likewise, when jobs have finished on Tier-2 sites, DDM is used to move the data back to the
parent Tier-1 (following the ATLAS Computing Model[5]).

While the PanDA system decides which jobs to run at a site, the actual task of job execution
is delegated to a pilot job[6]. Once the pilot starts executing on a site’s computing infrastructure
it contacts the server to ask for a job to execute. If the server has jobs waiting to run at that
site it dispatches the current highest priority job for execution there. This allows very flexible
late binding of resources to jobs[7]. If there are no jobs to be run at that time the pilot exits,
however the fact that there are jobs slots available at a particular site is fed into the PanDA
scheduler and will provide an added weight to broken jobs to this site.

Once the pilot has completed the job it signals the success or failure of this execution attempt
back to the PanDA server, which updates the job’s status and returns this back to ProdDB.

This architecture is sketched in Figure 1.
In addition to jobs from the ATLAS production system, PanDA is also able to execute user

jobs, which are defined by means of a client API supported by both the ganga and pathena
analysis tools[8].

The PanDA architecture is implemented by having a stateful database, with a number of
stateless front ends, which provide load balancing and redundancy. Clients need not care which
of the front ends they connect to, so they are hidden behind a DNS alias. For most purposes the
pilots, which execute ATLAS jobs, connect to the PanDA server, which dispatches and manages
job execution on the grid. In addition there is a PanDA monitor, which provides a human
interface to the system. This allows jobs to be monitored, but also provides other functionality,
such as the definition and monitoring of tasks themselves.

2.1. PanDA Scale
Since its adoption in 2007 as the unified ATLAS executor of production jobs, PanDA has proven
its scalability. PanDA regularly manages more than 35 000 simultaneous running jobs and more
than 120 000 jobs finishing per day. In addition, intelligent brokering of tasks to ATLAS clouds
has been introduced, which reduces the level of manual intervention required to run the system.

A one year plot of PanDA jobs running across all ATLAS clouds demonstrates the growth in
the scale of the system in Figure 2.

3. PanDA Infrastructure at CERN
3.1. Hardware
In consultation with the system administrators at BNL, it was decided to use three modern
server class machines to host the PanDA service at CERN. These machines had dual quad core



Task 
Request 

Database

Panda
Monitor

Panda 
Databases

ATLAS 
Production 
Database

Users

Task
Request

Job/Site
Monitoring Job

Definitions

Tasks

Job Request,
Dispatch and
ExecutionPilots Running

on Compute
Cluster

Figure 1. PanDA Architecture

Figure 2. Running PanDA jobs over one year

Intel E5410 CPUs, 16GB of RAM and 500GB of hard disk space. The expected load on the
machines was such that two servers would in fact be able to manage the load, with a third being
present to provide redundancy.

At CERN, FIO manage these machines and provide hardware level intervention and
maintenance as necessary.

The database service for the CERN setup was provided by the CERN database group. This
service consists of an Oracle Real Application Cluster (RAC) setup with failover and redundancy



built in.

3.2. Setup
As CERN machines are managed using the Quattor[9] installation and maintenance system.
This provides management of the operating system, basic packages, grid certificates and security
updates. On top of this installation Quattor templates can be defined, which add additional
package sets. For the ATLAS PanDA setup, templates used for the ATLAS Distributed Data
Management system, including 64 bit Python 2.5, were applied, providing a similar setup to
many other ATLAS central services.

3.3. Monitoring and Maintenance
Basic fabric monitoring of the machines is provided as part of the IT infrastructure managed by
CERN FIO. Alarms for common failure conditions, such as excessive load, low disk space, etc.
are handled automatically with a call to CERN’s piquet service to take appropriate action. In
addition, sensors for intelligently testing the health of the service are under development. These
sensors will feed into the load balanced alias system[10] of which the three current production
machines are a part. This ensures that only healthy machines behind the panda.cern.ch DNS
alias are returned to clients.

4. Migration
4.1. Monitor
The PanDA architecture of stateless front ends to the system always allowed for multiple
monitors to be setup. This was the first task of the migration, which was achieved in early
December 2008. It involved verifying and validating the basic infrastructure to run the PanDA
service.

As this was a parallel monitor setup there was no service interruption or downtime involved
at this stage of the migration.

Once this new monitor setup was achieved, it became the primary PanDA interface for
ATLAS users and shifters. However, at this point in the migration, the performance of the
monitor actually degraded as a result of the long RTT between the new monitor infrastructure
at CERN and the backend database, which at that time was MySQL at BNL. The monitor
infrastructure at BNL was maintained throughout the migration process.

4.2. Task Request Database
As outlined in §2, the PanDA system also offers an web interface, through the PanDA monitor,
which allows production coordinators to define new tasks in the ATLAS production system.
This service requires a special Task Request database, which is separate from the rest of the
PanDA job execution databases. This task request database, which is specifically designed to
interact with task requestors via the web, then pushes the task into the ATLAS ProdDB, which
is designed to interact with further automated systems. We note that ProdDB was always hosted
on Oracle at CERN, while the jobs were executed though the BNL MySQL panda servers – this
made ATLAS tasks a truly international process! (Figure 3.) As the task request database
was decoupled from the rest of PanDA, it was felt to be a very suitable candidate for the first
database to migrate from BNL MySQL to CERN.

Preparations were made by making an initial export of the data in the database (see §5
for more details), which then allowed the monitor database code, which is responsible for the
generation of the SQL queries, to be debugged and optimised.

As large tasks themselves take many days to complete, it was acceptable to have a two day
downtime in the task request system while the migration from BNL to CERN took place. On



Task 
Request 

Database

Production 
Database

Panda 
Databases

Generate
JobsDefine 

Task

Move 
Task

Figure 3. Task from PanDA monitor web interface to jobs defined for execution in PanDA
databases

Database Role
PandaDB Fast buffer for jobs currently active in the system
LogDB Pilot logfile extracts
MetaDB Holds cloud, site and queue information
ArchiveDB Archive of all jobs ever run by PanDA

Table 1. Panda databases

Monday the 8th of December the task request system was stopped. The data from the BNL
MySQL database was exported to CERN and then imported into Oracle in about 2 hours. After
this the remainder of the downtime was used to validate the task request interface and run trail
task definitions through the system. On the afternoon of Tuesday the 9th of December the
system was up and running for production coordinators to define tasks.

There was, however, one unexpected difficulty encountered after the migration: the python
cx oracle module used to connect the PanDA monitor to the Oracle databases proved to be
unexpectedly hard to install into the BNL monitor infrastructure. This meant that after this
phase of the migration the BNL monitors could no longer be used define tasks and the panda
monitors were no longer identical.

4.3. Server
As the monitor and task request interfaces were being migrated, code development was underway
to prepare the panda server for use with Oracle.

This would involve the migration of four databases from MySQL to Oracle. These databases
are shown in Table 1.

Test versions of these databases schemas were established in the CERN database integration
service (INTR) and some trial jobs were run successfully through the system to validate the code
changes. However, the intention was to migrate PanDA into the production offline database
service for ATLAS (ATLR).

4.3.1. First Cloud Migration Since early in 2008, when all of ATLAS production migrated to
using the PanDA system, there had been a parallel PanDA setup at CERN, which supported
two of the smaller ATLAS computing clouds, Italy and CERN itself (which manages access to
some CERN resources through the grid). This setup was a mirror of the BNL one and used
MySQL, which was not well supported. With the intention to move to Oracle at CERN it
seemed natural to first move these two clouds into the new system.

This was prepared for 9th March, but the CERN Oracle Database Administrators (DBAs)
considered that insufficient load testing had been done and advised strongly against a move to
the ATLR database at this time (ATLR hosts other ATLAS offline databases and adverse load



from ill formed queries could cause problems for other services). This prompted some significant
work over the weekend preceding the proposed migration date to run several thousand jobs
through the integration system. Even so, the DBAs still feared that not all client code had been
well enough tested and continued to advise further testing. This was problematic as extended
testing could only be achieved by removing significant amounts of ATLAS computing resource
from the collaboration, which was not acceptable.

Eventually a compromise was reached, where a partial migration would happen, but onto
the INTR database. Regular backups of the system were put in place, which gave us sufficient
confidence to run real ATLAS production jobs through this set up.

4.3.2. Further Load Initial indications, after the migration of these clouds to the new setup,
were good. However, some optimisation of the server code and the database schema (§5.2) was
done to improve query performance where required.

As load on the INTR database was low we added other clouds when there was opportunity to
do so, e.g., after a significant downtime for the German cloud after a major storage intervention
at their Tier-1.

Eventually a procedure was developed whereby clouds could be migrated live, without
downtime. This involved a coordinated switch over for pilots to change the server they contacted
to request jobs, together with a change in the PanDA configuration to ensure that new jobs were
picked up by the new servers and not the old ones. Jobs in the old server which had started
running were allowed to complete, but jobs which had not yet started were ‘failed’ in the old
server, which pushed them quickly over to the new server.

Using this technique, eventually eight of the eleven ATLAS computing clouds were migrated
to CERN, still running on the INTR database. This accounted for about 60% of ATLAS
production capacity as the remaining clouds included two of the largest, France and the United
States.

Monitor Issues In fact, the server code was relatively quick to validate as production ready.
All queries made by the server are fast, well controlled and act, mainly, on smaller optimised
tables. The panda monitor, on the other hand, has to support queries which are significantly
more difficult, e.g., deep queries on the very large ArchiveDB table. This requires extensive
customisation of the SQL and the use of Oracle specific features, to gain adequate performance.
As the monitor continued to support searching of the archives at BNL this required significant
amounts of work to finally produce fast well optimised queries.

4.3.3. Final Steps After these improvements in the monitor code were validated the final
migration of the database from INTR to ATLR (§5.3) was done. Then the final ATLAS
production clouds, FR and US were migrated into the CERN Oracle PanDA service at the
beginning of May. This essentially completed the migration process, with only some bookkeeping
work to produce a final merged version of ArchiveDB remaining.

5. Databases
The migration of the PanDA service from one database type to another might, at first glance,
appear to be a simple matter. SQL is a well established standard and client queries against one
database engine should work against any other.

In fact this turns out not to be the case for two main reasons:

(i) The SQL ‘dialect’ of each database engine may be non-standard in several ways and, unless
development is done with portability specifically in mind, use of these non-standard features
(which are often very convenient!) will appear in the code.



(ii) Each database engine will have quite specific features and implementation details which
impact on how well queries run. In order to optimise performance, database queries must
be written with these details in mind.

Much of the hard work of the migration involved reworking the SQL queries and optimising
the underlying database schemas.

5.1. Schema Migration
Initial migration of the PanDA schemas was done using the Oracle SQLDeveloper Migration
function. However, some improvements to this automated schema can be then made. e.g.,
the migration tool re-implements the MySQL AUTOINCREMENT function as an Oracle trigger ‘on
update’, which means that the client code does not need to be changed. However, it is better
if the client code itself implements the internal NEXTVAL explicitly in its query and after this is
done the trigger can be removed.

5.1.1. Partitioned Tables The most significant change between the MySQL and Oracle schemas
was in the ArchiveDB. For performance reasons this had been implemented in MySQL as a series
of bi-monthly tables (Jan Feb 2007, Mar Apr 2007, . . . ). This meant that the client code had
to be aware of this structure and generated appropriate chained MySQL queries, aggregating
the results if necessary. In Oracle it was possible to re-merge all of these sub-tables into one
large partitioned table, where a partition is used for each month’s data. While this allowed for
a simplification of the client code, it meant that great care had to be taken in structuring the
SQL appropriately to avoid triggering a full table scan of a table containing millions of rows.

5.2. Optimisation
Optimising queries on the ArchiveDB in particular meant ensuring that two indexes were always
used in the query, and that Oracle was delivered the correct ‘hint’ so that it chose the best
execution plan for the query.

After this had been implemented then deep searches of the ArchiveDB, which probed
hundreds of days of the archive and matched more than 100 000 rows could be done in less
than 60s.

5.3. Oracle Migration
Once all queries had been optimised the PanDA databases were made ready to migrate from
INTR to ATLR. Almost all of the historical data in the ArchiveDB could be migrated in advance,
leaving only a small fraction to be moved on the day of migration. The smaller live tables were
migrated using Oracle Data Pump while the PanDA server itself was shutdown. In order to
avoid losing running jobs, as this migration was being done while the production system was
live, the timeout on the pilot for the final update of job status for completed jobs, was increased
from 12 minutes to 60 minutes. The migration was completed in just under 90 minutes, so its
impact on the production system was very small.

6. Conclusions
The migration of the PanDA system from BNL and MySQL was accomplished in a little over five
months. This was considerably longer than was first anticipated because of many small delays
which held up the process, other pressures on the time of key people and the unexpectedly
difficult work involved in managing the new merged ArchiveDB queries.

Now that the migration has been achieved, a highly scalable setup for this key component
of the ATLAS offline computing system has been established. This should serve ATLAS well in
the coming years of LHC data taking.



Acknowledgements
Support for this work was provided in part by GridPP, funded by the UK Science and Technology
Facilities Council. BNL authors are employed by Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

Notice: The publisher by accepting the manuscript for publication acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for United
States Government purposes.

References
[1] Maeno T 2008 Journal of Physics: Conference Series 119 062036 (4pp) URL

http://stacks.iop.org/1742-6596/119/062036

[2] The ATLAS Collaboration 2008 Journal of Instrumentation 3 S08003 URL
http://stacks.iop.org/1748-0221/3/S08003

[3] Nevski P, Kilmentov A and Tanaka J 2007 Steering of grid production in atlas experiment Computing in
High Evergy Physics 2007 URL http://tinyurl.com/op6pnp

[4] Branco M, Cameron D, Gaidioz B, Garonne V, Koblitz B, Lassnig M, Rocha R, Salgado P and Wenaus T
2008 Journal of Physics: Conference Series 119 062017 (9pp) URL
http://stacks.iop.org/1742-6596/119/062017

[5] Jones R and Barberis D 2008 Journal of Physics: Conference Series 119 072020 (6pp) URL
http://stacks.iop.org/1742-6596/119/072020

[6] Nilsson P 2008 Journal of Physics: Conference Series 119 062038 (6pp) URL
http://stacks.iop.org/1742-6596/119/062038

[7] Thain D and Livny M 2003 Grid 2: Blueprint for a New Computing Infrastructure (Elsevier) chap 19
[8] Harrison K, Jones R W L, Liko D and Tan C L 2006 Distributed analysis in the atlas experiment

Proceedings of the UK e-Science All Hands Meeting 2006 URL
http://www.allhands.org.uk/2006/proceedings/papers/720.pdf

[9] Jouvin M 2008 Journal of Physics: Conference Series 119 052021 (6pp) URL
http://stacks.iop.org/1742-6596/119/052021

[10] Bahyl V and Garfield N 2006 Dns load balancing and failover mechanism at cern Computing in High
Evergy Physics 2006 URL http://tinyurl.com/o7fma2


