
Jack Cranshaw
David Malon

Alexandre Vaniachine

Petaminer: Using ROOT for Efficient
Data Storage in MySQL Database

The Petaminer architecture is shown in Figure 1. The Petaminer
storage engine plugs in to a MySQL server. The engine invokes
ROOT and FastBit to read and index ROOT files. Standard
MySQL client tools and APIs are used to query ROOT data from
the MySQL server.

1. Introduction
 High Energy and Nuclear Physics (HENP) experiments store Petabytes of event data and Terabytes of

calibration data in ROOT files. The Petaminer project is developing a custom MySQL storage engine to
enable the MySQL query processor to directly access experimental data stored in ROOT files. Our project
is addressing the problem of efficient navigation to PetaBytes of HENP experimental data described with
event-level TAG metadata, which is required by data intensive physics communities such as the LHC and
RHIC experiments. Physicists need to be able to compose a metadata query and rapidly retrieve the set
of matching events, where improved efficiency will facilitate the discovery process by permitting rapid
iterations of data evaluation and retrieval.

 Our custom MySQL storage engine enables the MySQL query processor to
directly access TAG data stored in ROOT TTrees. As ROOT TTrees are
column-oriented, reading them directly provides improved performance over
traditional row-oriented TAG databases. Leveraging the flexible and powerful
SQL query language to access data stored in ROOT TTrees, the Petaminer
approach will enable rich MySQL index-building capabilities for further
performance optimization.

The Petaminer prototype permits queries run via
MySQL to read data directly from ROOT and be
returned as SQL result sets. The Petaminer engine
can index ROOT tables using FastBit bitmap indexing
and use this index to optimize queries. Unindexed
Petaminer queries have ~40% speed improvement
over unindexed MySQL queries on simulated TAG
DB data. Indexed Petaminer queries are ~10x faster
than unindexed Petaminer queries. MySQL indexed
queries are 5-6x faster than Petaminer indexed
queries which suggests potential for further
performance improvement. Figure 4 compares the
performance results of queries using the Petaminer
engine prototype versus generic MySQL.

Fig. 4: Petaminer versus MySQL query performance (log-log scale)

2. Architecture

3. Performance 4. Results and Future Work

Paul HamillValeri Fine
Jérôme Lauret

Argonne National Laboratory Brookhaven National Laboratory Tech-X Corporation

Fig. 1: Petaminer high-level system architecture Fig. 2: SQL versus ROOT data organization

SQL data is stored in database tables as rows, which optimizes
writes and updates. ROOT data is stored in columns, which is
optimal for fast reads and large-scale data mining. Figure 2
compares SQL and ROOT data organization.

The Phase I prototype integrates MySQL, ROOT and FastBit to demonstrate
the feasibility of using MySQL to query ROOT data. This approach leverages
the ease of use of SQL and the performance and scalability of ROOT to
provide efficient query tools with automatic schema migration for evolving
TAG DB metadata. The performance results confirm our hypothesis that
queries against column-based ROOT data can provide increased efficiency
over row-based SQL tables. The prototype has been installed at the Argonne
US Atlas Support Center (ASC) for testing and evaluation.

Phase II will further optimize performance, demonstrate the capability to read
Petascale data, implement additional functionality, and build a production-
quality system. Possible Phase II tasks include query optimization; reading
data from PROOF distributed storage; integration of ROOT TFormulas as
MySQL User-Defined Functions; an embedded version of Petaminer that
permits using SQL to read ROOT data without a MySQL server; query
parallelization; and testing and evaluation on realistic Petascale distributed
data.

Fig. 3: Mapping ROOT data to MySQL schema

The Petaminer engine maps ROOT constructs such as
TTrees and attributes to MySQL schema elements such as
tables and columns. This permits users to intuitively compose
SQL queries on ROOT data structures. Figure 3 shows a
mapping of ROOT file structure to MySQL database schema.

TFile MyData.root {
 TTree tree {
 TBranch<Int_t> a1
 TBranch<Float_t> a2
 TBranch<Char_t> a3

 }

}

TABLE MyData {
 a1 INT,
 a2 DOUBLE,
 a3 VARCHAR
}

ROOT MySQL

