

An update on perfmon and the struggle to get into the Linux kernel

CERN openlab

Andrzej Nowak March 26th 2009

Generic needs for performance monitoring

- > Application developers and system tuners need performance monitoring tools to improve their software and hardware
- > Generic requirements (at CERN)
 - Linux compatible
 - Full x86 capability
 - Robust
 - Lightweight
 - Unintrusive
 - Reliability with HEP applications
 - No license issues, free and Open Source

> The subsystem of choice: perfmon

Not perfect, but very good

Perfmon profile (1)

> Hardware-based performance monitoring in the operating system

> Features

- Linux support
- System level monitoring
- Program level monitoring, incl. following execution paths
- Counting mode (direct PMU usage)
- Flat profile mode; address to symbol translation when possible
- Negligible performance impact (no cost if unused)

> Includes support for advanced x86 PMU features

Masks, edges, latency (Core i7), PEBS, IBS

> Manages to fully support and utilize diverse and complex PMU hardware

 Supported architectures: x86 (Intel/AMD), Itanium, SPARC, Cell, PowerPC, Cray, MIPS

> Major contributors:

- HP Labs
- Google
- AMD
- IBM
- Intel
- Sony

- Toshiba
- Cray
- SiCortex
- Broadcom
- Cornell University

Perfmon architecture

> 3 components:

- Simple kernel-based PMU access facility and context switcher (as a kernel patch)
- Intermediate library
- Client applications (i.e. pfmon)

Usage scenarios

> Counting

- Example: How many instructions did my application execute?
- Example: How many times did my application have to stop and wait for data from the memory?

> Sampling

- Reporting results in "regular" intervals
- Example: every 100'000 cycles record the number of SSE operations since the last sample

> Profiling

- Example: how many cycles are spent in which function?
- Example: how many cache misses occur in which function?
- Example: which code address is the one most frequently visited? (looking for hotspots)

A brief history of perfmon

- Conceived in HP labs for the Itanium architecture (Stephane Eranian)
- > Gradually expanded to support other architectures as well
- >x86 support significantly improved in recent years; well maintained
- Expanded to be a standard performance monitoring framework for Linux (see Jan 24th 2008 presentation from S. Eranian)

perfmon at CERN (1)

> Certain restrictions needed to be lifted

- Lack of robust symbol resolutions
- Lack of compatibility with large frameworks and long execution chains
- Lack of general interoperability
- > Significant effort on behalf of Stephane Eranian (then HP Labs), Ryszard Jurga (CERN) and Andrzej Nowak (CERN) to improve on those points in 2006 and 2007

perfmon at CERN (2)

- >Symbol resolution code rewritten 3 times
- > Handles large software complexity and multiple monitoring modes well (per-thread, system-wide, kernel level etc)
- >Used in many software and hardware related R&D projects at CERN openlab, in CERN IT and in other parts of CERN (Physics dept)
- >Used in a test run on 60 batch nodes collecting CPU usage data in the background

Further developments

> Other activities foreseen

- Continued and/or expanded monitoring of batch nodes (minor performance hit)
- Easy deployment across standard CERN configurations
- > For that, perfmon should be included in Scientific Linux (SL)
- In order for that to happen, perfmon v2/v3 should be included in Red Hat Enterprise Linux which is the base for SL
- > That means that perfmon should be available in the Linux kernel
 - A goal which is in line with the Author's strategy

Kernel inclusion benefits

> Recognition as a standard

> Adoption by major distributions

- Performance monitoring applications readily available to the user
- >ISVs regard favorably
- > Hardware manufacturers regard favorably
- > Assurance of stability, support and portability

> Thus, many influential people would like this, not just us

Getting perfmon in the linux kernel (1)

- > Working with the kernel community is difficult
- > Years of relentless efforts of Stephane Eranian (HP Labs / Google) have yielded mixed results
 - Git trees created
 - Several iterations of reviews on LKML over the years
 - Minimalistic and fragmented "perfmon v3" created specifically to satisfy LKML critiques
 - This version was very close to inclusion and already being tested

> Rival patch posted in late 2008

- Different approach, redesign
- > Lots of politics involved

Getting perfmon in the linux kernel (2)

> The future is unclear at this moment

> The good news

- There is some serious discussion about access to performance monitoring in "userspace"
- Linux is finally nearing a solution to the performance monitoring problem

> The bad news

- Years of experience and testing on multiple platforms are being ignored
- The "new" solution seriously lacks robustness and expandability, dismisses the needs of expert users
- Coders responsible for the patch seem to have remarkable kernel experience, but no significant performance monitoring experience
- The "new" solution is not perfmon, which we know and successfully use on a wide variety of CPUs

Spin-offs

> gpfmon – a graphical front-end to pfmon

Other tools, such as HP Caliper and VTune feature robust GUIs

> Performance tuning workshops at CERN

Andrzej Nowak – Perfmon update / CHEP 2009

Future directions

> Continued perfmon support at CERN

- Usage
- Development
- Improvements, fixes
- Testing (especially with new hardware platforms)
- **>** Closer integration with experiments
- > Possible closer integration with batch processing
- > Looking forward to a standard for performance monitoring in Linux

