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Just one extra command
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TProof::Open(“”)



What is PROOF?
• A system for running ROOT queries in parallel on a large number 

of distributed computers or many-core machines
• PROOF is designed to be a transparent, scalable and adaptable 

extension of the local interactive ROOT analysis session
• Extends the interactive model to long running “interactive 

batch” queries
• Uses xrootd for data access and communication infrastructure
• For optimal CPU load it needs fast data access (SSD, disk, 

network) as queries are often I/O bound
• Can also be used for pure CPU bound tasks like toy Monte 

Carlo’s for systematic studies or complex fits



Where to Use PROOF
• Central Analysis Facility (CAF)
• Departmental workgroups (Tier-2’s)
• Multi-core, multi-disk desktops (Tier-3/4’s)



The PROOF Approach
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PROOF cluster

•  Cluster perceived as extension of local PC
•  Same macro and syntax as in local session

•  More dynamic use of resources
•  Real-time feedback
•  Automatic splitting and merging



Multi-Tier Architecture
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Optimize for data locality or high bandwidth data server access
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What is PROOF Lite?
• PROOF optimized for single many-core machines
• Zero configuration setup (no config files and no daemons)
• Workers are processes and not threads for added robustness
• Like PROOF it can exploit fast disks, SSD’s, lots of RAM, fast 

networks and fast CPU’s
• Once your analysis runs on PROOF Lite it will also run on PROOF

■ Works with exactly the same user code as PROOF



How Can I Use PROOF Lite
• Get rid of your own event loop

■ Coding your own event loop is error prone anyway *

• Get rid of POOL
■ Size and performance overhead *

• Get rid of Python
■ Performance overhead *

• Use the TSelector framework
■ Let ROOT make the event loop, it knows how to do it
■ Use properly split TTree’s for fast access
■ Compile your code on-the-fly with ACliC

* see “Profiling Post-Grid analysis”, Akira Shibata, ACAT’08, Erice. 
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PROOF Lite Sample Session

void go_ana(int aclic = 1)
{
   gROOT->ProcessLine(".L makeChain.C");
   TChain *chain = makeChain();

   Long64_t evtmax=2619000;
   gROOT->Time();
   if (aclic) chain->Process("TSelector_Ntuple_Zee.C+","",evtmax);
   else       chain->Process("TSelector_Ntuple_Zee.C", "",evtmax);
}
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PROOF Lite Sample Session
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And these two statements will soon be done fully automatic



The ROOT Data Model
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TSelector - User Code

// Abbreviated version
class TSelector : public TObject {
protected:
    TList *fInput;
    TList *fOutput;
public
    void   Notify(TTree*);  
    void   Begin(TTree*);
    void   SlaveBegin(TTree *);
    Bool_t Process(int entry);
    void   SlaveTerminate();
    void   Terminate();
};
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TSelector::Process()
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   ...
   ...
   // select event
   b_nlhk->GetEntry(entry);         if (nlhk[ik] <= 0.1)    return kFALSE;
   b_nlhpi->GetEntry(entry);        if (nlhpi[ipi] <= 0.1)  return kFALSE;
   b_ipis->GetEntry(entry); ipis--; if (nlhpi[ipis] <= 0.1) return kFALSE;
   b_njets->GetEntry(entry);        if (njets < 1)          return kFALSE;
   
   // selection made, now analyze event
   b_dm_d->GetEntry(entry);         //read branch holding dm_d
   b_rpd0_t->GetEntry(entry);       //read branch holding rpd0_t
   b_ptd0_d->GetEntry(entry);       //read branch holding ptd0_d

   //fill some histograms
   hdmd->Fill(dm_d);
   h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
   ...
   ...



The Packetizer
• The packetizer is the heart of the system

• It runs on the client/master and hands out work to the workers

• The packetizer takes data locality and storage type into account
■ Tries to avoid storage device overload

• It makes sure all workers end at the same time

Pull architecture
workers ask for work, no complex worker state in the master



PROOF Pull Technology Avoids Long Tails
• In push approach last job determines the total execution time

■ Basically a Landau distribution

• Example:
■ Total expected time 20h, target 1h
■ 20 sub-jobs, 1h +/- 5%

Time of slowest sub-job

Long tails, e.g. 15% > 4h

10000 toy experiments



PROOF Lite Performance



PROOF Lite Performance
“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried 
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core 
mac pro (photo included)... Very impressive.”  -- Akira Shibata, email.
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PROOF Lite Performance

SSD’s 10x times faster
than HDD in concurrent
read (S. Panitkin, BNL,
see talk 395).
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Future PROOF Lite Developments
• Packetizer optimizations specific to PROOF Lite

■ Full exploitation of the TTree cache needs synchronization with 
packet size

■ File system awareness
■ Use of an internal, fast, cache layer (e.g. SSD)

• Fully automatic usage of PROOF Lite on many core machines
■ No TProof::Open() and TChain::SetProof() needed



Conclusions
• PROOF Lite is a seamless extension of ROOT
• PROOT Lite is zero config
• PROOF Lite is a good incentive to start using TSelectors for 

analysis and unlock the power of your machine
• Moving from PROOF Lite to full blown PROOF is completely 

transparent


