
PROOF Lite
Or how to finally make use all your cores

Fons Rademakers, Gerardo Ganis
CERN

Does the load on your 8-core machine look like
this during your analysis session?

Does the load on your 8-core machine look like
this during your analysis session?

Or worse,
like this on your 24-core machine?

Or worse,
like this on your 24-core machine?

What would be needed to make it look like
this?

What would be needed to make it look like
this?

Or like this?

Just one extra command

Just one extra command

TProof::Open(“”)

What is PROOF?
• A system for running ROOT queries in parallel on a large number

of distributed computers or many-core machines
• PROOF is designed to be a transparent, scalable and adaptable

extension of the local interactive ROOT analysis session
• Extends the interactive model to long running “interactive

batch” queries
• Uses xrootd for data access and communication infrastructure
• For optimal CPU load it needs fast data access (SSD, disk,

network) as queries are often I/O bound
• Can also be used for pure CPU bound tasks like toy Monte

Carlo’s for systematic studies or complex fits

Where to Use PROOF
• Central Analysis Facility (CAF)
• Departmental workgroups (Tier-2’s)
• Multi-core, multi-disk desktops (Tier-3/4’s)

The PROOF Approach

File catalog

Master

Scheduler

Storage

CPU’s

Query

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

PROOF cluster

• Cluster perceived as extension of local PC
• Same macro and syntax as in local session

• More dynamic use of resources
• Real-time feedback
• Automatic splitting and merging

Multi-Tier Architecture

Adapts to wide
area virtual

clusters

Geographically
separated domains,

heterogeneous
machines

Network performance
Less important VERY important

Optimize for data locality or high bandwidth data server access

ROOT
Client/
PROOF
Master

From PROOF

ROOT
Client

PROOF
Master

PROOF
Worker

PROOF
Worker

PROOF
Worker

xrootd/xpd

xrootd/xpd

xrootd/xpd

xrootd/xpd

TCP/IP

Unix Socket

Node

ROOT
Client/
PROOF
Master

To PROOF Lite

PROOF
Worker

PROOF
Worker

PROOF
Worker

Unix Socket

Node

What is PROOF Lite?
• PROOF optimized for single many-core machines
• Zero configuration setup (no config files and no daemons)
• Workers are processes and not threads for added robustness
• Like PROOF it can exploit fast disks, SSD’s, lots of RAM, fast

networks and fast CPU’s
• Once your analysis runs on PROOF Lite it will also run on PROOF

■ Works with exactly the same user code as PROOF

How Can I Use PROOF Lite
• Get rid of your own event loop

■ Coding your own event loop is error prone anyway *

• Get rid of POOL
■ Size and performance overhead *

• Get rid of Python
■ Performance overhead *

• Use the TSelector framework
■ Let ROOT make the event loop, it knows how to do it
■ Use properly split TTree’s for fast access
■ Compile your code on-the-fly with ACliC

* see “Profiling Post-Grid analysis”, Akira Shibata, ACAT’08, Erice.

How Can I Use PROOF Lite
• Get rid of your own event loop

■ Coding your own event loop is error prone anyway *

• Get rid of POOL
■ Size and performance overhead *

• Get rid of Python
■ Performance overhead *

• Use the TSelector framework
■ Let ROOT make the event loop, it knows how to do it
■ Use properly split TTree’s for fast access
■ Compile your code on-the-fly with ACliC

* see “Profiling Post-Grid analysis”, Akira Shibata, ACAT’08, Erice.

0

8250

16500

24750

33000

PyAthena
PyROOT

Athena

CINT/TSelector
CINT

SFrame
g++

ACliC/TSelector
ACliC

325093043823844

18762

68386762

558178107 00252986919901533346683245

Ev
en

t p
ro

ce
ss

in
g

ra
te

 in
 H

z
POOL TTree

DPD content event processing rate normalized to kSI2k,
from “Profiling Post-Grid analysis”, Akira Shibata, ACAT’08, Erice.

PROOF Lite Sample Session

void go_ana(int aclic = 1)
{
 gROOT->ProcessLine(".L makeChain.C");
 TChain *chain = makeChain();

 Long64_t evtmax=2619000;
 gROOT->Time();
 if (aclic) chain->Process("TSelector_Ntuple_Zee.C+","",evtmax);
 else chain->Process("TSelector_Ntuple_Zee.C", "",evtmax);
}

PROOF Lite Sample Session

void go_ana(int aclic = 1)
{
 gROOT->ProcessLine(".L makeChain.C");
 TChain *chain = makeChain();

 Long64_t evtmax=2619000;
 gROOT->Time();
 if (aclic) chain->Process("TSelector_Ntuple_Zee.C+","",evtmax);
 else chain->Process("TSelector_Ntuple_Zee.C", "",evtmax);
}

PROOF Lite Sample Session

void go_ana(int aclic = 1)
{
 gROOT->ProcessLine(".L makeChain.C");
 TChain *chain = makeChain();

 TProof::Open(“”);
 chain->SetProof();

 Long64_t evtmax=2619000;
 gROOT->Time();
 if (aclic) chain->Process("TSelector_Ntuple_Zee.C+","",evtmax);
 else chain->Process("TSelector_Ntuple_Zee.C", "",evtmax);
}

PROOF Lite Sample Session

void go_ana(int aclic = 1)
{
 gROOT->ProcessLine(".L makeChain.C");
 TChain *chain = makeChain();

 TProof::Open(“”);
 chain->SetProof();

 Long64_t evtmax=2619000;
 gROOT->Time();
 if (aclic) chain->Process("TSelector_Ntuple_Zee.C+","",evtmax);
 else chain->Process("TSelector_Ntuple_Zee.C", "",evtmax);
}

And these two statements will soon be done fully automatic

The ROOT Data Model
Trees & Selectors

preselection analysis
Ok

Output list

Process()

Branch

Branch

Branch

BranchLeaf Leaf

Leaf Leaf Leaf

Leaf Leaf

Event n
Read needed

parts only

Chain

Loop over events

1 2 n last

Terminate()
- Finalize analysis

 (fitting, ...)

Begin()
- Create histograms
- Define output list

TSelector - User Code

// Abbreviated version
class TSelector : public TObject {
protected:
 TList *fInput;
 TList *fOutput;
public
 void Notify(TTree*);
 void Begin(TTree*);
 void SlaveBegin(TTree *);
 Bool_t Process(int entry);
 void SlaveTerminate();
 void Terminate();
};

18

TSelector::Process()

19

 ...
 ...
 // select event
 b_nlhk->GetEntry(entry); if (nlhk[ik] <= 0.1) return kFALSE;
 b_nlhpi->GetEntry(entry); if (nlhpi[ipi] <= 0.1) return kFALSE;
 b_ipis->GetEntry(entry); ipis--; if (nlhpi[ipis] <= 0.1) return kFALSE;
 b_njets->GetEntry(entry); if (njets < 1) return kFALSE;

 // selection made, now analyze event
 b_dm_d->GetEntry(entry); //read branch holding dm_d
 b_rpd0_t->GetEntry(entry); //read branch holding rpd0_t
 b_ptd0_d->GetEntry(entry); //read branch holding ptd0_d

 //fill some histograms
 hdmd->Fill(dm_d);
 h2->Fill(dm_d,rpd0_t/0.029979*1.8646/ptd0_d);
 ...
 ...

The Packetizer
• The packetizer is the heart of the system

• It runs on the client/master and hands out work to the workers

• The packetizer takes data locality and storage type into account
■ Tries to avoid storage device overload

• It makes sure all workers end at the same time

Pull architecture
workers ask for work, no complex worker state in the master

PROOF Pull Technology Avoids Long Tails
• In push approach last job determines the total execution time

■ Basically a Landau distribution

• Example:
■ Total expected time 20h, target 1h
■ 20 sub-jobs, 1h +/- 5%

Time of slowest sub-job

Long tails, e.g. 15% > 4h

10000 toy experiments

PROOF Lite Performance

PROOF Lite Performance
“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

PROOF Lite Performance

"BTW, we just tried PROOF-lite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

PROOF Lite Performance

"BTW, we just tried PROOF-lite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

PROOF Lite Performance

"BTW, we just tried PROOF-lite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

PROOF Lite Performance

SSD’s 10x times faster
than HDD in concurrent
read (S. Panitkin, BNL,
see talk 395).

"BTW, we just tried PROOF-lite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

Future PROOF Lite Developments
• Packetizer optimizations specific to PROOF Lite

■ Full exploitation of the TTree cache needs synchronization with
packet size

■ File system awareness
■ Use of an internal, fast, cache layer (e.g. SSD)

• Fully automatic usage of PROOF Lite on many core machines
■ No TProof::Open() and TChain::SetProof() needed

Conclusions
• PROOF Lite is a seamless extension of ROOT
• PROOT Lite is zero config
• PROOF Lite is a good incentive to start using TSelectors for

analysis and unlock the power of your machine
• Moving from PROOF Lite to full blown PROOF is completely

transparent

