PROOF Lite

Or how to finally make use all your cores

Fons Rademakers, Gerardo Ganis
CERN

Does the load on your 8-core machine look like
this during your analysis session?

Does the load on your 8-core machine look like
this during your analysis session?

Or worse,
like this on your 24-core machine?

mmE!

(o1
v
£
i e
)
©
S
()}
5
e 3
O~
S
S 3
>\
c
o
2
-
id
()
—

 QNUE. SUSTENT

What would be needed to make it look like
this?

What would be needed to make it look like
this?

= = S B S B
" EEEEEEL
ElEIEIEIEElE]
l E [l E [l =4

U*u 3 lf . - ol J'l. » :
: . - ~
DN 1

ol
—
-~ o
L

1 : H 1
~} Y - -y ™ - 0 | ol - s

. —n - = —Ln al —1 - i 1 v N4

, = - = 2 | =] = = =5 = =

n i3 Sl Sl o ey Sl SCiesy Sy Ly Sty

i il ool gl -2 L Ll L Los i e LYe -

O . . g a 00 Ve Q 0 e 0

o0 R - no ' " o Ve 0 - 00 o

(o1
A
L
id
)
—
o
@)

= -~ - 1
3\ =
—

=3 = =4 =a. =3 = = = =2 =3 =t
: » . Nl e

o [e o o o o -4 -4 o =4

Ly (8 L) Ly () | Ly (9 r...u“ o Ly T =Sy ’f.
-, (5 ~ s . . : 3 d RS .
00 e B - oG - 2 e - N - - v

Just one extra command

Just one extra command

TProof::Open(“”)

What is PROOF?

* A system for running ROOT queries in parallel on a large number
of distributed computers or many-core machines

* PROOF is designed to be a transparent, scalable and adaptable
extension of the local interactive ROOT analysis session

* Extends the interactive model to long running “interactive
batch” queries

* Uses xrootd for data access and communication infrastructure

* For optimal CPU load it needs fast data access (SSD, disk,
network) as queries are often 1/0 bound

» Can also be used for pure CPU bound tasks like toy Monte
Carlo’s for systematic studies or complex fits

Where to Use PROOF

* Central Analysis Facility (CAF)
* Departmental workgroups (Tier-2's)
* Multi-core, multi-disk desktops (Tier-3/4's)

The PROOF Approach

PROOF query:
data file list, mySelector.C

Feedback,
merged final output

Cluster perceived as extension of local PC
e Same macro and syntax as in local session
More dynamic use of resources

Real-time feedback

Automatic splitting and merging

PROOF cluster

Scheduler

Multi-Tier Architecture

Client Master Slaves Files Adapts to wide

area virtual

| master
| clusters

Commands, ; .
sorpts | s -, 4= Geographically

separated domains,

_ heterogeneous
Output list

(histograms, ...) | > | S = 2 machines

Network performance
Less important —————————> VERY important

Optimize for data locality or high bandwidth data server access

From PROOF

To PROOF Lite

What is PROOF Lite?

* PROOF optimized for single many-core machines
» Zero configuration setup (no config files and no daemons)
» Workers are processes and not threads for added robustness

* Like PROOF it can exploit fast disks, SSD’s, lots of RAM, fast
networks and fast CPU’s

* Once your analysis runs on PROOF Lite it will also run on PROOF
- Works with exactly the same user code as PROOF

How Can | Use PROOF Lite

* Get rid of your own event loop
- Coding your own event loop is error prone anyway *

* Get rid of POOL
= Size and performance overhead *

* Get rid of Python
= Performance overhead *

* Use the TSelector framework
- Let ROOT make the event loop, it knows how to do it

- Use properly split TTree's for fast access
- Compile your code on-the-fly with ACIiC

* see “Profiling Post-Grid analysis; Akira Shibata, ACAT'08, Erice.

How Can | Use PROOF Lite

* Get rid of your own event loop
= Codina vour own event loop is error brone anvwav *

®
Get r B POOL b TTree
= Siz
33000
* Getr »
= Pe = 24750
<
® (@)
Use 1 2 16500
- Le S
U 2 8250
= US =
’ z
- Cc 0
* see “Profi DPD content event processing rate normalized to kSI2k,

from “Profiling Post-Grid analysis’ Akira Shibata, ACAT'08, Erice.

PROOF Lite Sample Session

void go_ana(int aclic = 1)

{

gROOT->ProcessLine (" .L makeChain.C") ;
TChain *chain = makeChain() ;

Long64 t evtmax=2619000;

gROOT->Time () ;

if (aclic) chain->Process("TSelector Ntuple Zee.C+","",6 evtmax) ;
else chain->Process ("TSelector Ntuple Zee.C", "",6evtmax);

PROOF Lite Sample Session

——
void go_ana(int aclic = 1)

{
gROOT->ProcessLine (" .L makeChain.C") ;

TChain *chain = makeChain() ;

Long64 t evtmax=2619000;

gROOT->Time () ;

if (aclic) chain->Process("TSelector Ntuple Zee.C+","", 6 evtmax);
else chain->Process ("TSelector Ntuple Zee.C", "",6evtmax);

PROOF Lite Sample Session

void go_ana(int aclic = 1)

{
gROOT->ProcessLine (" .L makeChain.C") ;
TChain *chain = makeChain() ;

TProof: :Open (V") ;
chain->SetProof () ;

Long64 t evtmax=2619000;

gROOT->Time () ;

if (aclic) chain->Process("TSelector Ntuple Zee.C+","",6 evtmax) ;
else chain->Process ("TSelector Ntuple Zee.C", "",6evtmax);

PROOF Lite Sample Session

- -
void go_ana(int aclic = 1)

{
gROOT->ProcessLine (" .L makeChain.C") ;

TChain *chain = makeChain() ;

TProof: :Open (V") ;
chain->SetProof () ;

Long64 t evtmax=2619000;

gROOT->Time () ;

if (aclic) chain->Process("TSelector Ntuple Zee.C+","", 6 evtmax);
else chain->Process ("TSelector Ntuple Zee.C", "",6evtmax);

And these two statements will soon be done fully automatic

The ROOT Data Model
Trees & Selectors

Output list

preselection analysis \ l

TSelector - User Code

// Abbreviated version
class TSelector : public TObject {
protected:
TList *fInput;
TList *fOutput;
public
void Notify (TTree¥*) ;

void Begin (TTree%*) ;

void SlaveBegin (TTree *);
Bool t Process(int entry);
void SlaveTerminate () ;
void Terminate () ;

TSelector::Process()

// select event

b nlhk->GetEntry (entry) ; if (nlhk[ik] <= 0.1)

b nlhpi->GetEntry (entry) ; if (nlhpi[ipi] <= 0.1)
b _ipis->GetEntry (entry); ipis--; if (nlhpi[ipis] <= 0.1)
b njets->GetEntry (entry) ; if (njets < 1)

// selection made, now analyze event

return
return
return
return

b dm d->GetEntry (entry) ; //read branch holding dm d
b rpd0_ t->GetEntry (entry); //read branch holding rpd0 t
b ptd0_d->GetEntry (entry); //read branch holding ptd0_d

//£ill some histograms
hdmd—>Fill(dm_d);
h2->Fill(dm d,rpd0_t/0.029979*1.8646/ptd0_d) ;

kFALSE;
kFALSE;
kFALSE;
kFALSE;

The Packetizer

* The packetizer is the heart of the system
* |t runs on the client/master and hands out work to the workers

* The packetizer takes data locality and storage type into account
- Tries to avoid storage device overload

* |t makes sure all workers end at the same time

Pull architecture

workers ask for work, no complex worker state in the master

PROOF Pull Technology Avoids Long Tails

* In push approach last job determines the total execution time
- Basically a Landau distribution

* Example:
- Total expected time 20h, target Th

= 20 sub-jobs, Th +/- 5% >

10000 toy experiments

ntries

Long tails, e.g. 15% > 4h

10 12 14 16 18 20

Time of slowest sub-job

PROOF Lite Performance

PROOF Lite Performance

“l couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

PROOF Lite Performance

“l couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

"BTW, we just tried PROOF-Ilite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

PROOF Lite Performance

“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

"BTW, we just tried PROOF-Ilite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

Processing rate (Events/sec)

20 25
2 workers

PROOF Lite Performance

“I couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

"BTW, we just tried PROOF-Ilite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

Processing rate (Events/sec) | Processing rate (MB/sec) J

20 25) 16 18 20 22
2 workers £ workers

PROOF Lite Performance

“l couldn't resist trying this. I just got myself the ROOT trunk, compiled it and tried
your .C file. Indeed, there is zero configuration on my part and it ran on our 8-core
mac pro (photo included)... Very impressive.” -- Akira Shibata, email.

"BTW, we just tried PROOF-Ilite on my 8-core Mac Pro with 14GB RAM and a fast
RAID-0. We processed 3 million events in ~6 seconds, setting the highest
processing rate of ATLAS analysis data I've seen..." -- Kyle Cranmer, email.

Processing rate (Events/sec) | Processing rate (MB/sec) J

SSD’S 1OX times faSter :7 Single variable scan. Single node
than HDD in concurrent !
read (S. Panitkin, BNL, EL A A A A o
see talk 395). ‘ e T e T e e

Number of workers

Future PROOF Lite Developments

* Packetizer optimizations specific to PROOF Lite

- Full exploitation of the TTree cache needs synchronization with
packet size

* File system awareness
- Use of an internal, fast, cache layer (e.g. SSD)

* Fully automatic usage of PROOF Lite on many core machines
* No TProof::Open() and TChain:SetProof() needed

Conclusions

 PROOF Lite is a seamless extension of ROOT
* PROQT Lite is zero config

* PROOF Lite is a good incentive to start using TSelectors for
analysis and unlock the power of your machine

* Moving from PROOF Lite to full blown PROOF is completely
transparent

