
CMS data quality monitoring web service

L Tuura1, G Eulisse1, A Meyer2,3

1 Northeastern University, Boston, MA, USA
2 DESY, Hamburg, Germany
3 CERN, Geneva, Switzerland

E-mail: lat@cern.ch, giulio.eulisse@cern.ch, andreas.meyer@cern.ch

Abstract. A central component of the data quality monitoring system of the CMS experiment
at the Large Hadron Collider is a web site for browsing data quality histograms. The production
servers in data taking provide access to several hundred thousand histograms per run, both live
in online as well as for up to several terabytes of archived histograms for the online data taking,
Tier-0 prompt reconstruction, prompt calibration and analysis activities, for re-reconstruction
at Tier-1s and for release validation. At the present usage level the servers currently handle in
total around a million authenticated HTTP requests per day. We describe the main features
and components of the system, our implementation for web-based interactive rendering, and
the server design. We give an overview of the deployment and maintenance procedures. We
discuss the main technical challenges and our solutions to them, with emphasis on functionality,
long-term robustness and performance.

1. Overview
CMS [1] developed the DQM GUI, a web-based user interface for visualising data quality
monitoring data for two reasons. For one, it became evident we would much prefer a web
application over a local one [2, 3, 4] (Fig. 1). Secondly, we wanted a single customisable
application capable of delivering visualisation for all the DQM needs in all of CMS, for all
subsystems, for live data taking as much as archives and offline workflows [5].

Content is exposed as workspaces (Fig. 3) from high-level summaries to shift views to expert
areas, including even a basic histogram style editor. Event display snapshots are also accessible.
The server configuration specifies the available workspaces.

Within a workspace histograms can be organised into layouts to bundle related information
together. A layout defines not only the composition, but can also provide documentation
(Fig. 3(b), 3(e)), change visualisation settings, and for example turn the reference histogram
display on (Fig. 3(d)). Shift views are usually defined as collections of layouts.

2. Implementation
Our server is built on CherryPy, a Python language web server framework [6]. The server
configuration and the HTTP API are implemented in Python. The core functionality is in a
C++ accelerator extension. The client is a GUI-in-a-browser, written entirely in JavaScript.
It fetches content from the server with asynchronous calls, a technique known as AJAX [3, 4].
The server responds in JSON [3, 7]. The browser code forms the GUI by mapping the JSON
structure to suitable HTML+CSS content (Fig. 2, 3).



Local console

DQM
Client

Event
Display

monitoring
elements,

events

Storage
Manager

access
Proxy
Server

access

Remote console

access

Tier-0
DQM

SVSuite
DQM

Local
ROOT
Files

events

Oracle
Database?

DQM GUI servers
at various locations

Figure 1. GUI architecture overview.

([{kind: ’AutoUpdate’, interval: 300, stamp: 1237219783, serverTime: 96.78},

{ kind: ’DQMHeaderRow’, run: "77’025", lumi: "47", event: "6’028’980",

service: ’Online’, workspace: ’Summary’, page: 1, pages: 1, services: [...],

workspaces: [{title: ’Summary’, label: ’summary’,

category: ’Summaries’, rank: 0}, ...],

runs: ["Live", "77057", ...], runid: 77025},

{ kind: ’DQMQuality’, items: [

{ label: "CSC", version:1236278233000000000,

name: "CSC/EventInfo/reportSummaryMap",

location: "archive/77025/Global/Online/ALL/Global run",

reportSummary: "0.998", eventTimeStamp: "1236244352" }, ...]}])

Figure 2. A JSON state response from which
the Summary page of Fig. 3(a) was rendered. The
response contains the minimal raw data needed
for this particular page view, grouped by browser
side JavaScript GUI plug-in which knows how to
translate the state in HTML+CSS, including the user
interaction controls.

(a) General summary. (b) Reduced histograms in normal
browsing mode, rendered with anti-
aliasing.

(c) An event display workspace.

(d) Reference histogram drawn. (e) The standard ECAL barrel
shift workspace.

(f) Single histogram explorer and
editor.

Figure 3. DQM GUI views.



⇒

Figure 4. A render plug-in can be added to modify the appearance of a histogram.

Figure 5. One of the central DQM and
event display consoles at the CMS centre
in Meyrin, 10 Sept 2008.

SourceSource

Archive Store
- DQM files
- Index file

Shared memory
accesses

HTTP servers
Service work

Threads 

Archive
Renderer

+ Watchdog

Web server

HTTP requests

Live
Renderer

+ Watchdog

Collector

Source Source

Figure 6. The distributed shared memory
system.

The user session state and application logic are held entirely on the web server; the browser
application is “dumb.” User’s actions such as clicking on buttons are mapped directly to HTTP
API calls such as setRun?v=123. The server responds to API calls by sending back a new
full state in JSON, but only the minimum required to display the page at hand. The browser
compares the new and the old states and updates the page incrementally. This arrangement
trivially allows one to reload the web page, to copy and paste URLs, or to resume the session
later.

The server responds to most requests directly from memory, yielding excellent response time.
All tasks which can be delayed are handled in background threads, such as receiving data
from the network or flushing session state to disk. The server data structures support parallel
traversal, permitting several HTTP requests to be processed concurrently.

The histograms are rendered in separate fortified processes to isolate the web server from
ROOT’s instability. The server communicates with the renderer via low-latency distributed
shared memory. Live DQM data also resides in distributed shared memory (Fig. 6). Each
producer hosts its own histograms and notifies the server about updates. The renderer retrieves
histograms asynchronously from the producers on demand; although single-threaded for ROOT,



it can have dozens of operations in progress concurrently. Recently accessed views are re-rendered
automatically on histogram update to reduce the image delivery latency.

Our DQM data is archived in ROOT files [8]. As reading ROOT files in the web server itself
would be too slow, use too much memory, prone to crash the server, and would seriously limit
concurrency, we index the ROOT data files on upload. The GUI server computes its response
using only the index. The ROOT files are accessed only to get the histograms for rendering in
a separate process (Fig. 6). The index is currently a simple SQLite database [9].

The server supports setting basic render options, such as linear vs. log axis, axis bounds and
ROOT draw options (Fig. 3(f)). These settings can be set interactively or as defaults in the
subsystem layout definitions. The subsystems can further customise the default look and feel of
the histograms by registering C++ render plug-ins, which are loaded on server start-up (Fig. 4).
We improve image quality significantly by generating images in ROOT in much larger size than
requested, then reducing the image to the final smaller size using a high-quality anti-alias filter.

3. Operation and experience
CMS centrally operates four DQM GUI instances for online and offline each, an instance per
purpose for the existence of data: Tier-0, CAF, release validation, and so on. In addition at
least four instances are operated by detector subsystems in online for exercises private to the
detector. Most DQM developers also run a private GUI instance while testing. A picture of a
live station is shown in Fig. 5.

Early on it became abundantly evident ROOT was neither robust nor suitable for long-
running servers. Some three quarters of all the effort on the entire DQM GUI has gone into
debugging ROOT instabilities and producing countermeasures. We are very pleased with the
robustness of the rest of the DQM GUI system.

CMS typically creates circa 50’000 histograms per run. The average GUI HTTP response
time is around 270 ms (Fig. 7(a)), which we find satisfactory. The production server has scaled
to about 750’000 HTTP requests per day with little apparent impact on the server response
time (Fig. 7(b)). Interestingly the vast majority of the accesses are to the online production
server from outside the online environment. This indicates the web-based monitoring and
visualisation solution applies well to the practical needs of the experiment. We have exercised
the GUI with up to 300’000 histograms per run. The GUI remains usable although there is
a perceivable interaction delay. We plan to optimise the server further such that it has ample
capacity to gracefully handle growing histogram archives and special studies with large numbers

10 ms

100 ms

1,000 ms

Oct'08 Nov'08 Dec'08 Jan'09 Feb'09 Mar'09

Avg: 270ms

(a) The daily average DQM GUI
response time versus date and
number of requests per day.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

Dec'07 Jan'08 Feb'08 Mar'08 Apr'08 May'08 Jun'08 Jul'08 Aug'08 Sep'08 Oct'08 Nov'08 Dec'08 Jan'09 Feb'09 Mar'09

Total Offline Online, remote access Online, control room

(b) Number of DQM GUI HTTP requests per day from December 2007
to March 2009.

Figure 7. DQM GUI HTTP server performance.



of monitored entities.

Acknowledgments
The authors thank the numerous members of CMS collaboration who provided abundant
feedback and ideas on making the GUI server more effective and useful for the experiment.

References
[1] CMS Collaboration, 1994, CERN/LHCC 94-38, “Technical proposal” (Geneva, Switzerland)
[2] Giordano D et al, 2007, Proc. CHEP07, Computing in High Energy Physics, “Data Quality Monitoring for

the CMS Silicon Strip Tracker” (Victoria, Canada)
[3] Eulisse G, Alverson G, Muzaffar S, Osborne I, Taylor L and Tuura L, 2006, Proc. CHEP06, Computing in

High Energy Physics, “Interactive Web-based Analysis Clients using AJAX: with examples for CMS, ROOT
and GEANT4” (Mumbai, India)

[4] Metson S, Belforte S, Bockelman B, Dziedziniewicz K, Egeland R, Elmer P, Eulisse G, Evans D, Fanfani A,
Feichtinger D, Kavka C, Kuznetsov V, van Lingen F, Newbold D, Tuura L and Wakefield S, 2007, Proc.
CHEP07, Computing in High Energy Physics, “CMS Offline Web Tools” (Victoria, Canada)

[5] Tuura L, Meyer A, Segoni I and Della Ricca G, 2009, Proc. CHEP09, Computing in High Energy Physics,
“CMS data quality monitoring: systems and experiences” (Prague, Czech Republic)

[6] CherryPy—A pythonic, object-oriented HTTP framework, 2009, http://cherrypy.org
[7] Introducing JSON, 2009, http://json.org
[8] ROOT—A data analysis framework, 2009, http://root.cern.ch
[9] SQLite—A library implementing a self-contained SQL database engine, 2009, http://sqlite.org

http://cherrypy.org
http://json.org
http://root.cern.ch
http://sqlite.org

