

The Integration of Virtualization into
the U.S. ATLAS Tier 1 Facility at

Brookhaven

Christopher Hollowell <hollowec@bnl.gov>
RHIC/ATLAS Computing Facility (RACF)
Physics Department
Brookhaven National Laboratory

mailto:hollowec@bnl.gov

Virtualizaton Overview

•What is Virtualization?
• A software layer which abstracts a single

computer/server into many, allowing for the simultaneous
execution of multiple operating system instances

•Implementations for Linux
• Full Virtualization

• VirtualBox, VMWare
• Hardware Assisted Full Virtualization

• KVM, Xen, VMWare, VirtualBox
• Paravirtualization

• Xen
• Operating System-Level Virtualization

• OpenVZ

Virtualizaton Overview (Cont.)
•Terminology

• Host OS
• Xen Domain0 (Dom0)
• Privileged control

• Guest OS
• Xen DomainU (DomU)
• Unprivileged

• Hypervisor
• Virtualization software itself - virtual machine monitor
• Type 1

• Executes in a control layer above the host and guest
operating systems
• Xen, VMware ESX

• Type 2
• Runs under an operating system

• VirtualBox, VMWare, Parallels
•

Virtualizaton at the RACF

•Running Xen 3.0.3, as shipped with RHEL5/SL5
•Used to split multicore hosts into individual virtual
servers where OS segmentation is desirable or
necessary

• Allows for the most efficient use of increasingly prevalent
multicore hardware
• Specific operating system version requirements
• Testbeds
• Isolation of low and high security services
• Reduction of resource contention (i.e. memory, disk

space), and the impact of OS crashes

Virtualizaton at the RACF (Cont.)

•U.S. ATLAS Tier1 Processor Farm
• 12 8-core physical machines paravirtualized into 40

servers: 2-3 guests + 1 Dom0 per host
• Each physical system contains a single interactive virtual

machine, and one or more batch/testbed host
components

• 32-bit SL5 Dom0 (control only), 32-bit SL4 DomUs
• Physical CPUs pinned to guests
• Networking via bridging, partitions for virtual disk devices
• All interactive systems/submit hosts virtualized

• Many interactive hosts desired for service redundancy
• Current usage does not require more than 2 CPUs per

host
• Eliminates interactive vs. batch process contention for

disk space, memory, and CPU resources

Virtualizaton at the RACF (Cont.)

•U.S. ATLAS Tier1 General Services
• Consists of WWW servers, database servers, ssh

gateways, etc.
• ~35 systems paravirtualized
• 64-bit RHEL5 Dom0, 32/64-bit RHEL5/4 DomUs
• Primarily used to replace retired (out of warranty)

hardware with virtual machines
• Possible for hosts without high bandwith/low latency

network and disk access requirements
• New hosts without extensive hardware requirements

virtualized as well
• Example usage:

• MonALISA server
• MyProxy server
• WWW servers primarily providing static content

Virtualizaton at the RACF (Cont.)

•Potential Future Use
• Many of the RACF processor farm batch hosts are also

dCache or xrootd/rootd storage pools. To increase
reliability, it may be desirable to isolate the storage
components from batch processing via virtual machines

• Cloud computing?
• Both would imply the deployment of Xen on the majority

of our 1900-node processor farm systems. Challenges:
• Number of available public IP addresses at BNL
• Configuration/management

• Live migration of VMs to minimize downtime for
hardware maintenance/issues

Xen

•Why Use Xen?
• Open, free
• Integrated into SL5/RHEL5
• Performance gains from paravirtualization
• Running Linux VMs only

•Issues
• OS image modifications necessary to utilize

paravirtualization
• Red Hat recently announced KVM will become the

default hypervisor for RHEL 5.4
• Xen will continue to be supported in RHEL5, however
• KVM requires a CPU supporting hardware assisted

virtualization (Intel VT-x, AMD-V)

Xen Management

•Needed a mechanism to centrally manage Xen
configuration and DomU installation on many
hosts

• Potentially scaling to thousands of systems
• Desired automated setup/installation of guest domains

during the Dom0 system build process
• Wanted the ability to centrally modify various

configuration parameters for guests in batch
• Preferred a solution which could interact with our

existing machine inventory database and host
installation infrastructure

Xen Management (Cont.)

•Nothing available met all of our needs
• Virt-manager

• Did not provide the required level of automation
• Cobbler/Koan

• In a development stage at the time we initially
investigated the use of Xen

• Mandated the adoption of a new installation
infrastructure

• Developed a custom solution

Changes to Infrastructure

•Processor Farm's Preexisting Automated OS
Deployment Infrastructure

• SL Kickstart-based
• PXE

• Custom PXE management software
• DHCP/TFTP configuration generated from a server

inventory MySQL database
• Packages obtained via locally maintained HTTP

repositories
•Machine Inventory Database Table Structure
Modified: Additional Fields Added

• dom0 – hostname of a DomU system's associated
Dom0

• vdisk – name of the Dom0 disk device allocated to a
DomU

Custom Solution

•Comands Executed in Dom0
• xenconf.py

• Automatically generates Xen configuration files for all
guests associated with a Dom0
• Fields in inventory database used as configuration

parameters
• Both “running” and “installation” configurations

generated
• /etc/xen/HOSTNAME
• /etc/xen/HOSTNAME_install
• Installation configurations point to install kernel/initrd

• installguest.sh
• Installs a named guest via its Xen installation

configuration file

Custom Solution (Cont.)
• allguests.sh

• Performs management operations on all guests
associated with a Dom0
• create
• destroy
• reboot
• install

• All VMs installed in parallel
• Output/input redirected to/from unused virtual terminals
• “Running” config automatically started when complete

• Automatic Guest Installation During Dom0
Provisioning

• Dom0 OS build contains a modified rc.local init script
• Executes the following on first boot:

• xenconf.py
• allguests.sh install

Custom Solution (Cont.)

•Centralized Configuration Changes
• Modify necessary fields in inventory DB
• Rerun xenconf.py on Dom0 host(s)

• Safe to run xenconf.py on systems where
configuration hasn't changed

• Issue appropriate “xm”, “allguests.sh” or
“installguest.sh” commands on necessary Dom0
host(s) to make the changes take effect
• Executing these commands manually for now

• Could be implemented via cron

Custom Solution (Cont.)

•Example Execution
• Adding an additional virtual host to a Dom0: acas0002

• WWW interface used to populate fields in inventory
DB prior to execution

[root@testdom0 ~]# ls /etc/xen/acas*
/etc/xen/acas0001 /etc/xen/acas0001_install
[root@testdom0 ~]# /guest/xenconf.py
Generating Xen configurations under /etc/xen/:
acas0001
acas0002
[root@testdom0 ~]# ls /etc/xen/acas*
/etc/xen/acas0001 /etc/xen/acas0001_install /etc/xen/acas0002
/etc/xen/acas0002_install
[root@testdom0 ~]# /guest/installguest.sh acas0002
...
[root@testdom0 ~]# xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 1211 8 r----- 966463.4
acas0001 26 3267 2 r----- 2489156.1
acas0002 27 3267 2 r----- 35082.7

Example Configurations

Example Xen DomU “Running” Configuration

###
/etc/xen/acas0001

kernel = "/guest/vmlinuz-ELxenU"
ramdisk = "/guest/initrd-ELxenU.img"
builder='linux'
memory = 3268
name = "acas0001"
cpus = "0-1"
vcpus = 2
vif = ['mac=00:16:3e:00:00:01, bridge=xenbr0']
disk = ['phy:sdb1,xvda,w']
root = "LABEL=/ ro"

Example Configurations (Cont.)

Example Xen DomU “Installation” Configuration

###
/etc/xen/acas0001_install

kernel = "/guest/vmlinuz.xen_install"
ramdisk = "/guest/initrd.img.xen_install"
builder='linux'
memory = 3268
name = "acas0001_install"
vcpus = 1
vif = ['mac=00:16:3e:00:00:01, bridge=xenbr0']
disk = ['phy:sdb1,xvda,w']
extra = "ks=http://repo.example.com/SL4_Kickstart/atlas-ks-XEN.cfg"

http://repo.example.com/SL4_Kickstart/atlas-ks-XEN.cfg

Configuration Generation

