ATLAS Grid Information System for the ATLAS Experiment

4 4

Raquel Pezoa'”? Slmone Campana , Benjamln Gaidioz ,
1,2

Gilbert Poulard Ricardo Rocha Luis Salinas

! Center for Technological Innovation on High Performance Computing,
Universidad Técnica Federico Santa Maria, Valparaiso, Chile
{raquel.pezoa, luis.salinas}@usm.cl

? Informatics Department, Universidad Técnica Federico Santa Maria
Valparaiso, Chile; luis.salinas@usm.cl

7 Physics Department, Universidad Técnica Federico Santa Maria
Valparaiso, Chile; raquel pezoa@usm.cl

? European Organization for Nuclear Research, CERN, Geneva, Switzerland
{benjamin.gaidioz, gibert.poulard, ricardo.rocha}@cern.ch

Abstract

ATLAS is the largest high energy physics experiment ever undertaken in the history of
Science and it will produce huge volumes of data, of the order of 10 PB per year. ATLAS uses
grid technology to distribute, store and analyse these immense amounts of data. The ATLAS
Distributed Computing (ADC) system provides a set of tools and libraries enabling data
movement, processing and analysis on a grid environment. While reaching a state of maturity
high enough for real data taking, it became clear that one component was missing exposing
consistent information regarding site topology, service and resource information from all
three distinct ATLAS grids (EGEE, NDGF and OSG).

This paper describes the ATLAS Grid Information System (AGIS) attempts to overcome
that lack, retrieving, storing and deploying the static and semi-static information about
resources, services, and topology of the whole ATLAS grid. We report on the fundamental
architectural work and the basic implementation of the ATLAS Grid Information System.

1. CERN and the LHC

CERN, the European Organization for Nuclear Research is one of the world's largest
and most renowned centres for scientific research in high energy physics.

The Large Hadron Collider (LHC) [1] is a gigantic scientific instrument located at CERN
near Geneva, Switzerland. The LHC has the form of a large ring of 27 Km length and lies
some 100 meters underground, below the Franco-Swiss border to the west of Geneva, at the
foot of the Jura mountains, in front of the Alps. The LHC is a particle accelerator which
brings protons and ions into head-on collisions at energies much higher than ever achieved

before. The LHC hosts four experiments in High Energy Physics: ALICE, ATLAS, CMS and
LHCb. Each experiment has its own system of detectors. These detectors will produce huge
amounts of data related to the myriads of particles --known and unknown-- resulting from the
collisions. This immense volume of data must be handled by the computing and information
systems integrated into the LHC. One of the experiments to be carried on at the LHC is called
ATLAS, which is an acronym that stands for A Toroidal LHC ApparatuS.

ATLAS is a multi-grid environment, that is, it is composed by diverse grid infrastructures
(called generically sub-grids in the sequel). For a multi-grid system to work efficiently it is of
paramount importance to have a system that provides information regarding resources,
services and topology of the grid. The ATLAS sub-grids currently have systems that solve
this issue for each particular sub-grid, but there is a real need of a global information system
operating above the particular sub-grids. This paper reports about a solution to the above
problem by means of a system called ATLAS Grid Information System (AGIS), which is
operating in a global way above the local sub-grid information systems. The purpose of this
system is to store and to provide static and semi-static information about resources, services
and topology of the whole ATLAS grid. This information is retrieved from different systems
belonging to the different sub-grids. To accomplish these tasks, different collecting services
were implemented. These collectors periodically gather the relevant data and store it into the
local database of the ATLAS Grid Information System. To provide the information to the
different components of the ATLAS grid, APIs were developed to query and update the
system. Also, the data is available through a web application, which uses authentication
service (X.509 proxy certificates) to update the system.

2. ATLAS Distributed Computing

The search for new fundamental particles in the ATLAS experiment is expected to produce
about 10 Petabytes (10x10'° Bytes) of data per year. In order to handle such a huge amount of
data, both during online data acquisition and during off-line processing of the events, a
distributed computing model called ATLAS computing model [3] was developed by the
collaboration and has decisively contributed to the development of hierarchical computing
and of the current computer grid paradigm, characterized by a high degree of decentralization
and sharing of resources [4].

The ATLAS computing model is based on a worldwide computing grid infrastructure that
uses a set of hierarchical tiers. The root node of the complex tiered topology is Tier-0, located
at CERN itself. Around Tier-0 there are 10 big Tier-1, located in Europe, Asia and North
America, each serving smaller communities usually tied to a specific Tier-1 by geographical
proximity. The next level is Tier-2 gathering more than 100 sites around the world. This
number will probably increase when the next level, Tier-3, will start to grow gathering
smaller centres around the world (see Figure 1).

The sites belonging to these tiers are also grouped into so called clouds. Thus, a rather
complex network emerges, which is usually referred to as the ATLAS grid. As of today the
ATLAS grid has more than 170 sites providing more than 30000 CPU's and a storage capacity
of more than 11000 TB [5].

Furthermore, the ATLAS grid is composed by three independent and different sub-grids:
Enabling Grid for E-sciencE (EGEE) [11], Nordic Data Grid Facility (NDGF) [12] and Open
Science Grid (OSG) [13]. These three sub-grids form the Worldwide LHC Grid Computing
Grid infrastructure (WLCG). Each sub-grid contains its own middleware and hence, it own
implementation of the different services of a grid system. However, the ATLAS grid has to
work as a single coherent infrastructure. Thus, a common middleware layer is required. The

design and implementation of a new component in that layer — the ATLAS Grid Information
System — is described in this paper.

. CERN
Tier 0 o
R IT NDGF ES
Tier 1 ‘
GRIF { mnzp3-cc | (iNzp3-Lapr | PIC Il es .
Tier 2
FR cloud SP cloud

Figure 1. Tiers of ATLAS

3. ATLAS Grid Information System

As it was mentioned above, each sub-grid of the ATLAS grid contains its own middleware
and hence its own implementation of the different services of a grid system. The ATLAS grid
depends on the underlining information provided by the grid middleware. In order to
optimally combine it with the monitoring information and the internal configuration of the
ATLAS Distributed Computing layer, ATLAS developed a new component, the ATLAS Grid
Information System (AGIS).

The main goal of the ATLAS Grid Information System (AGIS) is to provide the missing
information regarding resources, services and topology of the whole ATLAS grid, in order to
provide interoperability in a multi-grid environment. AGIS retrieves static and semi-static
information from the diverse sources coming from the different sub-grids. AGIS was
designed considering the benefits of the Dashboard Framework [6] which provides
directives to model a system with a layered client-server architecture, following a Model View
Controller (MVC) [7] pattern. Furthermore, AGIS follows the REpresentational State
Transfer (REST) principles [8], which are a set of architectural constraints on top of the basic
client-server architecture style.

AGIS provides diverse services to the clients for data retrieval. These services are software
components provided through a network-accessible endpoint. The AGIS architecture (Figure
2) groups the components in three main layers: Data Access Layer, Collectors, and Client
Connection, which are in charge of data management, data retrieval and data exposure,
respectively.

The MVC pattern isolates business logic from user interface, resulting in an application easy
to modify either the visualization of the application or the underlying layers.

REST is a design principle for ultra large scale systems [9]. This principle allows the
achievement of important design attributes such as loose-coupling, reliability, data visibility
and interoperability.

Clients ‘ C, H C, ‘ Cy ‘

&
==
G &

\ J
¢

AGIS
. DB

Figure 2. AGIS Architecture Overview

3.1. AGIS Components

The three layers (shown in Figure 2) logically group the main functionalities of AGIS: data
collection, management of persistent data collected from the diverse sources, and the data
exposing available in AGIS.

The Data Access layer corresponds to the data access interface and allows the management
of the persistent data, which is stored in a RDBMS system. The components of this layer
provide functionalities to query and update the stored data. Access to the database is
accomplished by using a connection pool in order to increase the performance of the system.

The Collectors layer provides capabilities for the data collection. AGIS has six different
collectors each one retrieving data from different sources. These collectors perform the
service of data retrieving and processing, giving the proper format to the data, in order to be
passed to the persistent storage (Data Access layer).

The Client Connection layer allows heterogeneous “application-to-application” and “user-
application” communication. The clients may contact the system to retrieve AGIS data using
direct HTTP access, APIs, command lines tools (CLI tools), or the web interface (for users).

The interaction between the users and applications with AGIS is done using HTTP
requests. Thus, HTTP native features were used as much as possible in all parts of the
implementation of the system.

AGIS follows the RESTful style. Therefore, resources in the RESTful scope are identified
with an ID. These resources may be: a request for cloud information, a request for site that
belongs to a determined tier, for the space tokens of a determined Storage Element service,
etc. AGIS exhibits all interesting information as URL identifiable resources. The methods for
manipulating these resources are standardized HTTP verbs, which increase process visibility
and interoperability.

Therefore, when a client needs to access AGIS data, it must contact the AGIS services,
which are accessed as AGIS resources identified with an URL (as the first principle of
RESTful proposes). The AGIS resources are accessed using the standard methods (second
principle of RESTful): PUT, GET, POST and DELETE and they are decoupled from their

representation (third principle of RESTful). Furthermore, every interaction with a resource is
stateless and context-free, which promotes the scalability through the feasibility of cashing
and reduced workload on the server. For instance, the AGIS cloud resource is referenced
with an URL. A POST request to this resource results in the creation of a new cloud in the
AGIS system. A GET request to the cloud resource will return a list of existing clouds; in
addition, the client can add some parameters in the GET request in order to retrieve specific
resource data. The DELETE request eliminates a cloud from the system.

3.2. Implementation

The ATLAS Grid Information System was implemented using the functionalities provided
by the Dashboard Framework. Python is the programming language used to implement the
system. The implementation had different stages, the development of Data Access Object
(DAO), the APIs, the data collectors, the command lines (CLI) tools and the web interface,
which are described as follows.

Data Access Object

The implementation of a Data Access Object (DAO) allows a clear design and
maintainability of the system, because the application queries are decoupled from the internal
implementation of the data storage. The DAO represents the data access interface, which are a
public set of methods for the update and retrieval of information. The connection pool is the
method used to access the database, in order to reduce the overhead in creating new
connections, reducing the load on the server and increasing the performance.

APIs

AGISQuery and AGISUpdate are the two APIs developed to query and update,
respectively, the ATLAS Grid Information System. The AGISQuery API provides different
methods to query the ATLAS Grid Information System. The AGISUpdate API allows
updating the data of the ATLAS Grid Information System. To update the system it is
necessary to have some permission. The authentication is done via X509 proxy certificates.

Data Collectors

The data collection is done using services that retrieves periodically data from the different
sources of information. These collector services are daemons that can contact diverse hosts
and collect information of interest. The implementation is based on the
arda.dashboard.service-config module provided by the Dashboard Framework.

There are six different sources of information, thus six different services that retrieve the
data and store it into a local database, and these services are: TiersOfATLASCollector,
GOCDBCollector, OIMCollector, BDIICollector, PandaCollector, and NDGF Collector.

The data collection implies regular access to the information sources. To provide a reliable
ATLAS Grid Information System, the collector services should run constantly and need to
recover any missing data in case of eventual failure and following restart. The functionalities
of the Dashboard Framework allow to monitor the collectors and to be aware about the status
of them, using some reporting methods: a web application showing the status of the
collectors, an email or a SMS.

Command Line Tools

The command line (CLI) tools allow the users to update and retrieve information to or
from the ATLAS Grid Information System, using command lines. The set of available tools
and their functionality is presented in Table 1.

CLI Tool Name Functionality

Lists ATLAS clouds

agis-clouds [-P | --pair]

Lists ATLAS sites

agis-sites agis-sites [-C | --cloud] [-T | --tier] [-R | --region] [-G | --grid] [-
O | --country] [-N | --name]

Lists ATLAS services

agis-services [-S | --site] [-T | --type] [-E | --endpoint]

Lists ATLAS space tokens

agis-spaceTokens [-C | --cloud] [-S | --site] [-E | --se]

Lists ATLAS queues
agis-queues [-C | --cloud] [-S | --site] [-E | --ce]

agis-clouds

agis-services
agis-spaceTokens

agis-queues

Table 1. CLI Tools

Web Interface

This first version of a web interface allows visualizing and updating the AGIS data in an
easy way. The web interface provides web pages, which are structured in the main
components: topology, clouds, sites, and services.

As it was mentioned before, all the processes of adding, removing or updating information
are done with authentication, using X509 proxy certificates. These certificates are commonly
used in security systems are a standard for dynamic delegation and identity creation in public
key infrastructures.

3.3. Evaluation

A first stage in the evaluation of AGIS is to determine if the functional requirements have
been satisfied. Unit and integration tests were used to evaluate the functional requirements. In
addition, it is important to know the functionalities of the system are performed. Thus, it is
necessary to analyse the non-functional requirements, which are related with the performance
of the system. In the AGIS system its performance is mainly related with the scalability.

Scalability is a term that appears frequently in computing literature, but is poorly defined
and there is little consensus as to what the term actually means. However, according [10] the
different definitions of scalability have a common aspect, which is a system needs to tolerate
variation or scaling in some characteristic affecting its execution. AGIS scalability was
evaluated considering the number of concurrent clients that query the system in a fixed period
of time. The test methodology is illustrated in the code below.

SET number of concurrent Users to N
SET period of time 10
SET number of maxConcUsers to P
SET AGISservices to AGISserv
WHILE concurrent Users <= maxConcUsers :
FOR S in AGIS services:
queryAGIS (S, concurrentUsers , T)
concurrentUsers ++
PRINT numberOfTransactions
END FOR

The tests increase the number of concurrent users (concurrentUsers) that are requesting a
specific service (S) until the maximum of concurrent users (maxConcUsers) is reached, in a
period of time (T). This test gives as output the number of transactions that can handle the
system. Each requested service corresponds to a use case.

Three different test cases were developed. One of the test cases is called “GetCloud”,
which returns the clouds of the ATLAS grid; it represents the simplest service of the system
with minimum operations involved. The other test case is called “GetSite”, which returns all
the sites of the system. Finally, “QueryTopology” queries all the entities and their
relationships (providing the whole ATLAS grid structure), dealing with relative complicated
computations.

80
0II
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 .

Concurrent Users 1 2 3 45 6 7 8 9 1011 1213 141516 17 18 19 20 21 22 23 24 25

Transactions
& 3
Transactions

&

8

Concurrent Users

a) GetSite b) QueryTopology

actions

8

400

2 a0

&

=
. III|II||‘|‘ II ‘ |
0 lIlII

12345678 9101112131415161718192021 222324 252527282930313233343536373839404 1424344454647 484950

Concurrent Users

¢) GetCloud
Figure 3. AGIS Tests

Figure 3 shows some of the tests results, which corresponds to the number of transactions
that AGIS can handle in a period of 10 seconds. GetSite and QueryTopology showed that
AGIS was able to handle with a good performance up to 25 concurrent users. GetSite test had
a peak of 19 concurrent users, which corresponds to 11.02 [trans/sec] (transactions per
seconds) and QueryTopology had a peak of 15 concurrent users with 9.04 [trans/sec].
GetCloud had a better performance, with 45 concurrent users, obtaining 66.1 [trans/sec].
Thus, the results of the three use cases can be considered as "good results" due to the
important is to satisfy the demands of the AGIS users, which can easily attain some hundreds
in number. Therefore, 11.02 [trans/sec], [trans/sec] and 66.1 [trans/sec] to get information

regarding cloud, site and topology, respectively, can reflect that with the current AGIS
implementation and server configuration, AGIS will be able to serve the expected load
coming from the diverse services and end users of ATLAS.

4. Conclusions

The main purpose of this paper is to briefly report on the fundamental architectural work
and the basic implementation of the ATLAS Grid Information System. For a detailed
description of this system please refer to [14]. The ATLAS grid corresponds to a multi-grid
environment because it is composed by three different sub-grids: EGEE, NDGF and OSG.
Due to the multi-grid nature of ATLAS, various components have been designed and
implemented that operate above the middleware components of each sub-grid in order to
provide interoperability. However, there was a need of a component that provides the
functionalities of a global Grid Information System. The ATLAS Grid Information System
(AGIS) is the new component that was designed and developed in order to overcome that
lack. AGIS retrieves and provides the static and semi-static information related with the
resources, services and topology of the ATLAS grid. To accomplish this task six different
collecting services had to be implemented. These collectors must periodically collect the
relevant data and store it into the local database of AGIS. To provide the information to the
different components of the ATLAS grid, APIs were developed to query and update the
system. Also, the data is available through a web application, which uses authentication
service to update the system.

The design of AGIS used the REST (REpresentational State Transfer) style as the
approach to provide interoperability, data visibility and scalability. In the computer science
literature no other grid information system using this style was found. The REST choice gave
good results. Some tests were applied to AGIS, aiming to evaluate the performance of the
system, in order to check that the design functional and non-functional system requirements
were indeed satisfied. Considering that the AGIS users easily represent hundreds together and
that the tests were applied in the real AGIS that is currently working in the ATLAS grid, we
can safely say that AGIS was able to serve the expected load and the functional and non-
functional system design requirements. AGIS handled a peak of 661 [trans/sec] having 46
concurrent users in a period of 10 seconds, which is enough for a system that provides static
and semi-static information regarding services, resource and topology in the ATLAS grid.

5. Future Work

The system is still under development, and we are trying to include requirements from more
areas than the ones initially considered. Furthermore, it is necessary to improve some
components --such as the web interface of the system-- and also to continue with the
evaluation phase.

The system will be extended to include service metadata, mostly central configuration data for
various components in the system.

6. Acknowledgements

Raquel Pezoa deeply appreciates the financial support received from two HELEN fellowships
that allowed her to complete two long-term and very pleasant and productive stays (April-
October, 2007, and May-July, 2008) at CERN, Geneva, Switzerland, in order to develop
researches on grid computing.

References

[1] CERN. Large Hadron Collider. http://public.web.cern.ch/Public/en/LHC/LHC-en.html

[2] ATLAS Experiment. http://atlas.ch/

[3] The ATLAS Computing Model.
http://www.gridpp.ac.uk/eb/ComputingModels/atlas_computing_model.pdf

[4] ATLAS Distributed Computing.
https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasDistributedComputing

[5] Gilbert Poulard, ATLAS and the WLCG Project. Latin American Software and Computing
Workshop. 10 - 13 March 2008, Buenos Aires, Argentina.
http://www.df.uba.ar/~aia/atlas_workshop/index.html

[6] Julia Andreeva et all. Dashboard for the LHC Experiments. In Journal of Physics: Conference
Series. Institute of Physics Publishing, 2007.

[7] Avraham Leff and James T. Rayfield. Web-application Development Using the
Model/View/Controller Design Pattern. In EDOC '01: Proceedings of the 5th IEEE International
Conference on Enterprise Distributed Object Computing, page 118, Washington, DC, USA, 2001.
IEEE Computer Society.

[8] Roy T. Fielding. Architectural Styles and the Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine, 2000.

[9] Xiwei Xu, Liming Zhu, Yan Liu, and Mark Staples. Resource-oriented Business Process Modeling
for Ultra-Large-Scale Systems. In ULSSIS '08: Proceedings of the 2nd international workshop on
Ultra-Large-Scale Software-Intensive Systems, pages 65-68, New York, NY, USA, 2008. ACM.

[10] Leticia Duboc, David Rosenblum, and Tony Wicks. A Framework for Characterization and
Analysis of Software System Scalability. In ESEC-FSE '07: Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, pages 375-384, New York, NY, USA, 2007. ACM.

[11] Enabling Grid for E-sciencE. http://www.eu-egee.org/

[12] Nordic Data Grid Facility. http://www.ndgf.org

[13] Open Science Grid. http://www.opensciencegrid.org/

[14]Raquel Pezoa Rivera, Design and Implementation of a Grid Information System for the
ATLAS Experiment at CERN. Thesis. In partial fulfillment of the requirements for the degree
of Master in Sciences in Computer Science. Universidad Técnica Federico Santa Maria,
Valparaiso, Chile, November 2008.

