

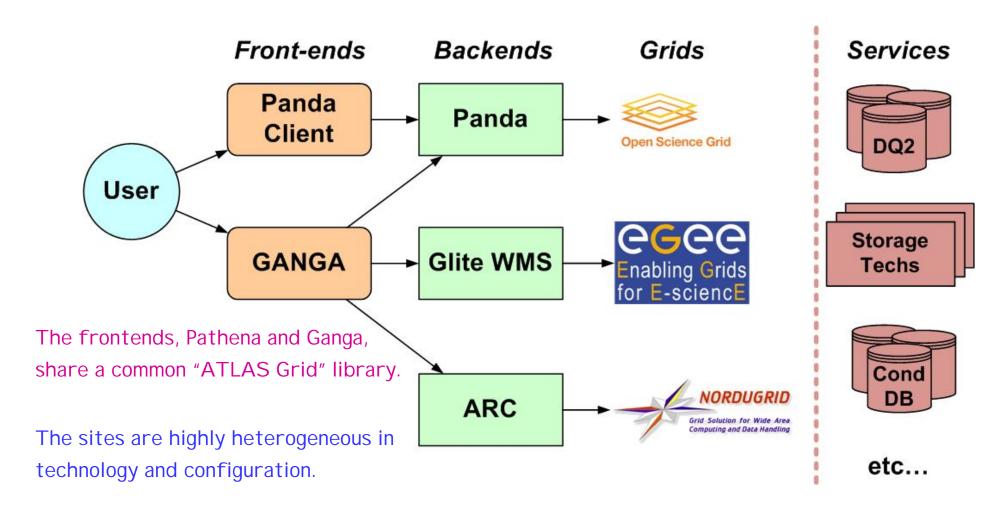
Functional and Large-Scale Testing of the ATLAS Distributed Analysis Facilities with Ganga

D.C. van der Ster (CERN), J. Elmsheuser (LMU), M. Slater (Birmingham), C. Serfon (LMU), M. Biglietti (INFN-Napoli), F. Galeazzi (INFN-Roma III)

Overview of the talk

- Overview of Distributed Analysis in ATLAS:
 - What needs to be tested? Workflows and Resources

- Functional Testing with GangaRobot:
 - Daily short tests to verify the analysis workflows
- Stress Testing with HammerCloud:
 - Infrequent (~weekly) large scale tests to stress specific components



DA in ATLAS: What can the users do?

- The ATLAS Distributed Computing (ADC) operational situation in a nutshell:
 - The grids and resources are established.
 - Distributed production and data distribution is well understood and tested.
 - Now, the priority is on validating distributed analysis for users
- What do the users want to do?
 - "What runs on my laptop should run on the grid!"
- Classic analyses with Athena and AthenaROOTAccess:
 - A lot of MC processing, cosmics, reprocessed data
 - Various sizes of input data: AOD, DPD, ESD
 - TAG analyses for direct data access
- Calibrations & Alignment: RAW data and remote database access
- Small MC Sample Production: transformations
- ROOT: Generic ROOT application also with DQ2 access
- Generic Executables: for everything else

DA in ATLAS: What are the resources?

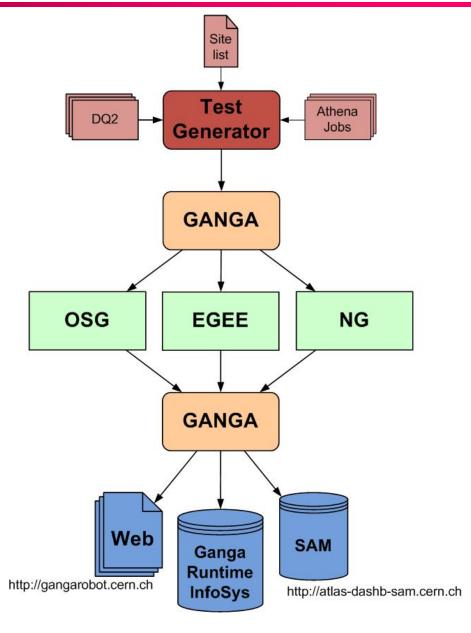
How do we validate ATLAS DA?

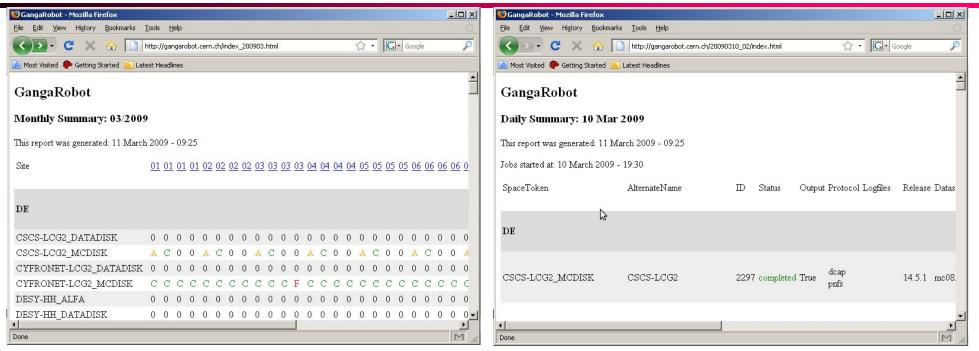
Use case functionalities?? Behaviour under load??

ATLAS DA Operations Activities

- This talk presents two activities to work on these problems:
 - Functional Testing with GangaRobot
 - Simulated Stress Testing with HammerCloud
- The third piece of the puzzle, not covered in this talk, is what we call the "Distributed Analysis Jamboree":
 - Coordinated stress test with real users, real analyses, and generating real chaos.
 - US has some experience of this type of test, and worldwide distributed analysis jamborees are being organized right now.

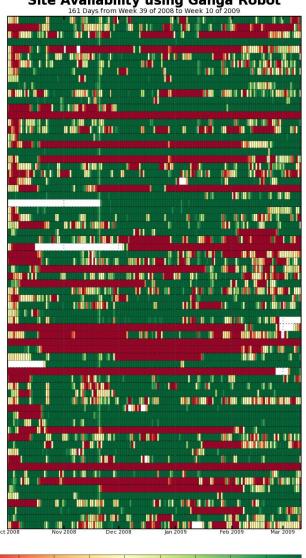
Functional Testing with GangaRobot

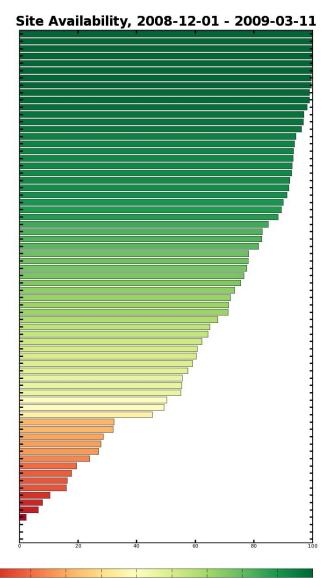

- Definitions:
 - Ganga is a distributed analysis user interface with a scriptable python API.
 - GangaRobot is both
 - a) a component of Ganga which allows for rapid definition and execution of test jobs, with hooks for pre- and post-processing
 - b) an ATLAS service which uses (a) to run DA functional tests
 - In this talk, GangaRobot is (b).
- So what does GangaRobot test and how does it work?


Functional Testing with GangaRobot

- 1. Tests are defined by the GR operator:
 - Athena version, analysis code, input datasets, which sites to test
 - Short jobs, mainly to test the software and data access
- 2. Ganga submits the jobs
 - To OSG/Panda, EGEE/LCG, NG/ARC
- 3. Ganga periodically monitors the jobs until they have completed or failed
 - Results are recorded locally
- 4. GangaRobot then publishes the results to three systems:
 - Ganga Runtime Info System, to avoid failing sites
 - SAM, so that sites can see the failures (EGEE only, OSG in deployment)
 - GangaRobot website, monitored by ATLAS DA shifters
 - > GGUS and RT tickets sent for failures

What happens with the results?




- The analysis tools need to avoid sites with failed tests:
 - For Ganga/EGEE users, feeding the results to the Ganga InfoSys accomplishes this.
 - For OSG and NG the sites are set offline manually by a shifter
 - In future, the results need to go to the planned central ATLAS InfoSys (AGIS)
- Results need to be relevant and clear so the problems can be fixed rapidly:
 - GangaRobot website has all the results... but causes information overload for non experts
 - SAM is more friendly and better integrated, but doesn't present the whole picture (and A.T.M. includes only EGEE).

Overall Statistics with GangaRobot

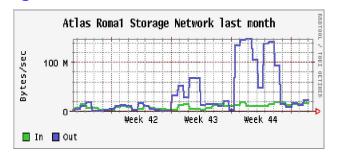
Site Availability using Ganga Robot 161 Days from Week 39 of 2008 to Week 10 of 2009

Plots from SAM dashboard http://dashb-atlas-sam.cern.ch/ of daily and percentage availability of EGEE sites over the past 3.5 months.

WARNING:

Don't automatically blame the sites! The fault could lie anywhere in the systems.

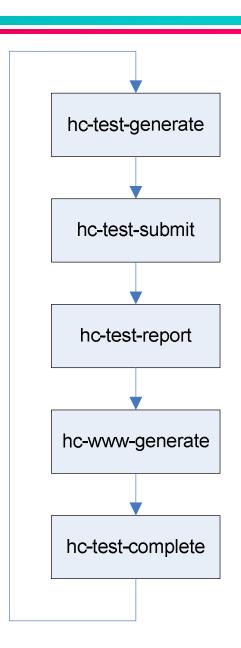
The good: Many sites with >90% efficiency


The bad: Less than 50% of sites have >80% uptime

The expected: Many transient errors, 1-2 day downtimes. A few sites are permanently failing.

Distributed Analysis Stress Testing

- The need for DA stress testing:
 - Example I/O rates from a classic Athena AOD analysis:
 - ➤ A fully loaded CPU can read events at ~20Hz (i.e. at this rate, the CPU, not the file I/O, is the bottleneck)
 - > 20Hz * 0.2MB per event = 4 MB/s per CPU
 - > A site with 200 CPUs could consume data at 800MBytes per second
 - > This requires a 10Gbps network, and a storage system that can handle such a load.
 - Alternatively, this means that 200 CPU cluster with a 1Gbps network will result in ~3Hz per analysis job
- In fall 2008, clouds started getting interested in testing the Tier 2s under load
 - The first tests were in I taly, and were manual:
 - 2-5 users submitting ~200 jobs each at the same time
 - Results merged and analyzed 24-48 hours later
 - ➤ The IT tests saturated 1Gbps networks at the T2 sites, resulting in <3Hz per job.

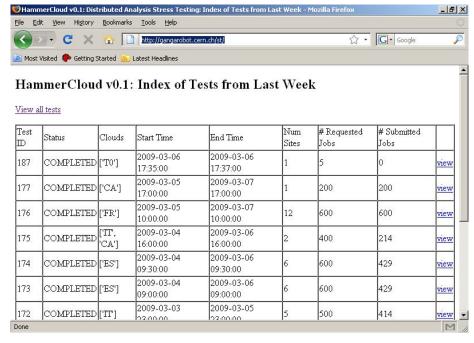

• From these early, we saw then need for an automated stress testing system to be able to simultaneously test all clouds: hence, we developed **HammerCloud**

HammerCloud: How it works?

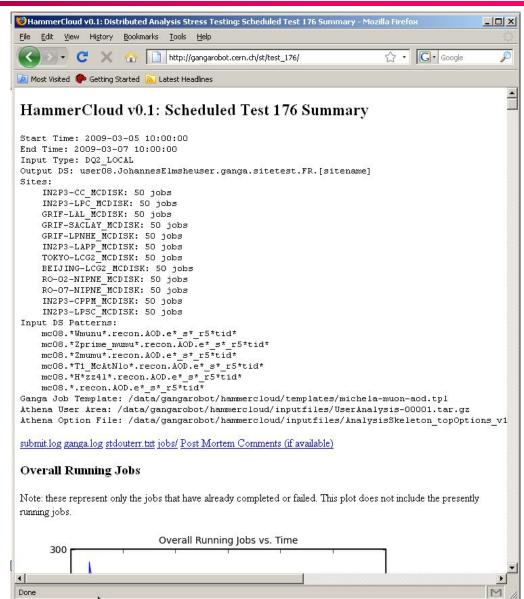
- What does HammerCloud (HC) do?
 - An operator defines the tests:
 - What: a ganga job template, specifying input datasets and including an input sandbox tar.gz (athena analysis code)
 - Where: list of sites to test, number of jobs
 - > When: start and end times
 - ➤ How: input data I/O (posix I/O, copy locally, or FileStager)
 - Each job runs athena over an entire input dataset. The test is defined with a dataset pattern (e.g. mc08.*.AOD.*), and HC generates one job per dataset.
 - > Try to run with the same datasets at all sites, but there are not always enough replicas.
 - HammerCloud runs the tests:
 - 1. Generate appropriate jobs for each site
 - 2. Submit the jobs (LCG and NG now; Panda and Batch coming)
 - 3. Poll their statuses, writing incremental results in HC DB
 - 4. Read HC DB to plot results on web.
 - 5. Cleanup leftovers; kill jobs still incomplete
 - When running many tests, each stage handles each test sequentially (e.g. gen A, gen B, sub A, sub B,...)
 - > This limits the number of tests that can run at once.

HammerCloud: What are the tests?

- HammerCloud tests real analyses:
 - AOD analysis, based on Athena UserAnalysis pkg, analyzing mainly muons:
 - > Input data: muon AOD datasets, or other AODs if muons are not available
 - ➤ In principal, the results would be similar to any analysis where the file I/O is the bottleneck.
 - Reprocessed DPD analysis:
 - > Intended to test the remote conditions database (at local Tier 1)
- What metrics does HammerCloud measure?
 - Exit status and log files
 - CPU/Wallclock ratio, events per second
 - Job timing:
 - Queue, Input sandbox stage-in, Athena/CMT setup, LFC lookup, Athena exec, Output storage
 - Number of events and files processed (versus what was expected)
 - Some local statistics (e.g. network and storage rates) are only available at site level monitoring
 - Site contacts very important!

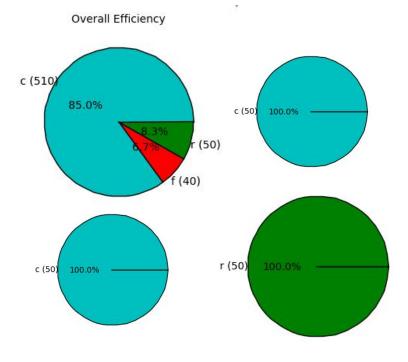

HammerCloud: What are the tests? (2)

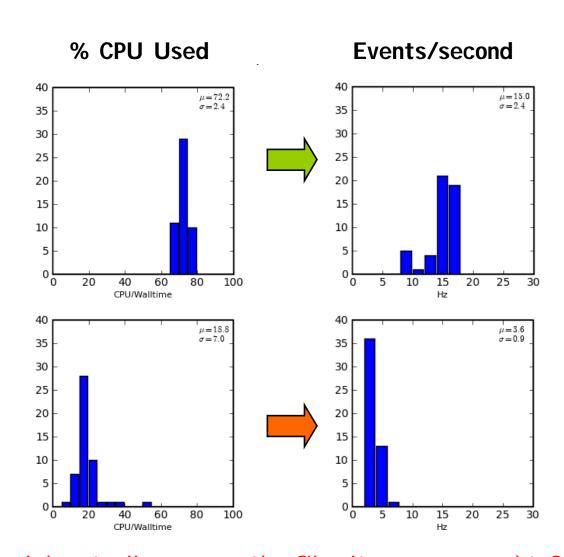
- Up until now, the key variable that HammerCloud is evaluating is the data access method:
 - Posix I/O with local protocol:
 - > To tune rfio, dcap, gsidcap, storm, lustre, etc...
 - > Testing with read-ahead buffers on or off; large, small or tweaked.
 - Copy the files locally before running
 - > But disk space is limited, and restarting athena causes overhead
 - Athena FileStager plugin:
 - ➤ Uses a background thread to JIT copy the input files from storage
 - > Startup Copy f1 Process f1 & copy f2 Process f2 & copy f3 etc...



HammerCloud Website

http://gangarobot.cern.ch/st/


Results from all tests are kept indefinitely.



Example HammerCloud Test Results

600 jobs across 12 sites ~50 million events, ~20000 files

7 sites had no errors

But, beware hidden failures! Did the job actually process the files it was supposed to? No, only 92% of the files that should have processed were... the other 8%? See later.

Overall HammerCloud Statistics

- Throughout the history of HammerCloud:
 - 74 sites tested; nearly 200 tests; top sites tested >25 times
 - ~50000 jobs total with average runtime of 2.2 hours.
 - Processed 2.7 billion events in 10.5 million files
- Success rate:
 - 29 sites have >80% success rate; 9 sites >90%
- Across all tests:
 - CPU Utilisation: 27 sites >50% CPU; 8 sites >70%
 - Event rate: 19 sites > 10Hz; 7 sites >15Hz
- With FileStager data access mode:
 - CPU Utilisation: 36 sites >50%; 24 sites >70%
 - Event rate: 33 sites > 10Hz; 20 sites > 15Hz; 4 sites > 20Hz
- Full statistics available at: http://gangarobot.cern.ch/st/summary.html

NOTE: These are overall summaries without a quality cut; i.e. the numbers include old tests without tuned data access.

What have we learned so far?

- The expected benefits:
 - We have found that most sites are not optimized to start out, and HC can find the weaknesses.
 - The sites rely on large quantities of jobs to tune their networks and storage
 - HammerCloud is a benchmark for the sites:
 - Site admins can change their configuration, and then request a test to see how it affects performance
 - We are building a knowledge base of optimal data access modes at the sites:
 - There is no magic solution w.r.t. Posix I/O vs. FileStager.
 - It is essential for the DA tools to employ this information about the sites.

What have we learned so far? (2)

The unexpected benefits:

- Unexpected storage bottlenecks (hot dataset problem):
 - In many tests, we found that the data was not well distributed across all storage pools, resulting in one pool being overloaded while the others sat idle.
 - Need to understand how to balance the pools
- Misunderstood behaviour of distributed data management tools:
 - The DB access jobs require a large sqlite database to be dq2-get'd before starting. It was not known that the design of dq2-get did not retrieve from a close site.
 - A large test could have brought systems down (but this was caught before the test thanks to a friendly user).
 - Ganga's download of the sq2lite DB was changed (as was dq2-get's behaviour).
- Found athena I/O bug/misunderstanding:
 - HC found discrepancies in the number of files intended to be and actually processed.
 - We found that athena, in the case that file open() times out, would exit with error status 0 and "success".
 - > Behaviour was changed for Athena 15.

Next Steps

- GangaRobot Functional Testing TODO list:
 - Technical improvements:
 - More tests: enumerate the workflows and test them all
 - Better integration with SAM/dashboards/AGIS: add non-EGEE sites !!
 - Procedural improvements:
 - Need more effort to report to and fix the broken sites
- HammerCloud Stress Testing TODO list:
 - V0.2 is ready, pending verification:
 - New testing model (continuous parallel tests) that will allow upward scaling
 - Advanced booking of repeated (e.g. daily/weekly) tests
 - I mplement testing on Panda & Batch backends:
 - Testing on Panda is the top priority.
 - More metrics, improved presentation, correlation of results
 - We have more than 60GB of logfiles... any data miners interested?
 - Make it more generic with support for other VOs:
 - ➤ LHCb testing would be rather simple

Conclusions

- Validating the grid for user analysis is a top priority for ATLAS
 Distributed Computing
 - The functionalities available to users are rather complete, now we are testing to see what breaks under full load.
- GangaRobot is an effective tool for functional testing:
 - Daily tests of the common use cases are essential if we want to keep sites working.
- HammerCloud is a relatively new tool; there is a lot of work to do.
 - Many sites have improved their networks and storage configurations
 - ATLAS-wide application of these tests are the top development priority.