

Online processing in the ALICE DAQ The Detector Algorithms

Sylvain Chapeland
Vasco Barroso
ALICE DAQ

Outline

- Context
- Detector Algorithms framework
 - Architecture
 - Interfaces
 - Databases
 - Libraries
- Deployment
- Current Status
- Performance considerations
- Perspectives

Context: ALICE

- 18 sub-detectors
- Need calibration
 - configuration
 - components vary with time
 - conditions change

- Large data volumes / statistics sets involved
- Should be done online
 - needed to configure some detectors electronics
 - results used in reconstruction

Context: ALICE DAQ

"Commissioning the ALICE Experiment "

Pierre Vande Vyvre Thursday, 16:30, Club D

- Full-duplex link to sub-detectors Front End Electronics
- Links/nodes parallelism
- Data-grabbing API
- Standalone / global runs

Context: Detector Algorithms (DA)

DA = Calibration task running online provided by the sub-detectors teams (exclusive tasks or background tasks)

DA framework: Architecture

EXCLUSIVE

□ 'LDC DA':

- □ dedicated (short) standalone run
- data recorded locally (in parallel)
- DA launched at end of run
- data processed directly on the LDC (easily exportable to FEE)
- e.g. pedestal

BACKGROUND

□ 'MON DA':

- dedicated standalone or global physics runs
- data samples picked-up from the normal data flow (non-intrusive)
- processed on dedicated machines
- e.g. dead channel mapping
- Events used: depends on DA
 - Physics triggers
 - Calibration triggers (laser, pulser, ...)

DA framework: Architecture

DA framework: Interfaces

- Experiment Control System:
 - control/launch, define runtime environment (e.g. data source)
 - Logging + ALICE Electronic Logbook
- File Exchange Server:
 - export to Offline Shuttle
 - Post processing & archiving
 - export to other online systems

"The ALICE Online Offline Framework for the Extraction of Conditions Data"

Chiara Zampolli

- Data Quality Monitoring
 - AMORE library
 - export to physics monitoring facility
 - display, check, reuse results

"The ALICE data quality monitoring"

Barthélémy von Haller

DA framework: Interfaces

- DAQ detector DB
 - input parameters
 - results (e.g. to be reused by other DAs, FEE scripts)
- Local storage:
 - working directory: temporary files
 - persistent directory: files saved for later local usage
- DAQ Data flow:
 - LDC DA: local recording
 - MON DA: data-grabbing per role, per detector, per trigger type

DA framework: Databases

- daqDetDB
 - MySQL DB
 - Tcl/Tk GUI browser
 - Command line + C API to get/store/list files
- File Exchange Server (FXS):
 - MySQL DB for indexation
 - Files on disk, sFTP/rssh for file access
 - Command line + C API to store files
- Logs (Tcl/Tk GUI browser) + ALICE Electronic Logbook (Web Interface)

Deployment

- Many sub-detectors teams: single deployment procedure needed
 - 1. Appropriate run types defined on ECS
 - 2. Detectors provide DAs
 - 3. DA validated on test platform (same than at runtime)
 - Automatically checkout, build, validate and report
 - Data file as input (real data / simulation)
 - Check I/O interface compliance
 - Benchmark
 - 4. Deployed at experimental area and tested standalone
 - 5. Put into production

Deployment: packaging

- DA code is stored in ALIROOT (Offline Software)
- Static executable is built => no runtime dependency
- □ Self documented RPM:
 - Contact
 - Link to documentation
 - Reference runs
 - DA type
 - Number of needed events
 - Input and output files
 - Used Trigger types

Current Status

- In production at experimental area since Dec 2007
- Collection and integration of the numerous DAs during the 2008 ALICE cosmic runs
- 30 DAs currently in production
- 1 DA per CPU core to guarantee resources
- 11 000 runs, 33 000 files, 80 GB of calibration data exported

Performance considerations

- DAs optimization whenever possible:
 - better performance => more stats, shorter dead time

- However, calibration tasks are often CPU demanding
- How to optimize:
 - DAs code
 - Compilers
 - Hardware

Performance considerations

Compilers: ICC provides 10-20% faster DA execution than GCC

Perspectives

- Hardware expansion for 2009 beam
- Distribution of events across processes for parallelism
- Launching mechanisms

Optimizations

- Dynamic libraries
- More DAs

Perspectives: conclusion

- DA framework in place and proved to work in production
 - common interface was worth the effort
 - all calibration requests so far fit in the architecture
 - mature implementation, can now deal with fine tuning and optimizations
- System ready, will scale up with needs
 - Sub-detectors are working on more DAs
 - Higher calibration demand expected with LHC startup