%

/ -
B)
Il’ | ef:‘.‘_“". .!,."I.rf'
1\ Y &7
._\!‘.__, ,..(_IJ!.

{ =1/

::I':" _.._] II

7

W

An Object-Oriented
Data Analysis Framework

The ROOT Event Recorder/Player

B. Bellenot V), R. Brun Y, Katefina Opocenska 2, F. Rademakers 1

1) CERN - European Organization for Nuclear Research, Geneva, Switzerland
2) Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

The ROOT framework offers a very complete set of GUI (Graphical User interface) widgets. In order to perform Quality Assurance (QA) and
validation of the GUI, an event recorder has been developed, to automate the process on all the supported platforms (e.g. Linux/X11, Win32, MacOS
X, ...). The event recorder can also be used for tutorial purposes, or even as a bug report tool (e.g. to illustrate a weird behavior or a crash).

Features: Types of events recorded.:
* Fully cross-platform: Sessions recorded on one specific platform can be replayed on « Command line events

any other supported platform. « Commands typed by user (e.g. "new TBrowser();")
 Small: Recorded sessions are saved in ROOT files, allowing to have long and complex + GUI events

GUI tests in a small file, in regard of e.g. capture video * Window creation, resize, movement

* Mouse movement, (double) click, drag & drop

RECORDING SESSION

There are several way of using the recorder. Here are a few examples.

1. Start ROOT 1. Start ROO

] r £2 Dynamic Filling Example (o 0 e
2. Start recorder GUI: new TGRecorder(); 2. Execute a macro creating a canvas (s i ver options Toos Hel
this creates and display the recorder panel: (e.g. hsimple.C from |_This is the px TPec®0T | | e
: = Eit Panel Mean 0.007475
@ ROOT Event Record... =l (=i $ ROOTSYS/tUt? rlaIS) 800 — itjiﬁai:fd"::” RMS 1
3. From the "Tools™ canvas menu, 200" Bvent ecorder
ime (00:00:00 select “Event Recorder” * =
. 600 —
Then, as previously: : s
: 500 —
4. Push the @ button to start recording :
5. In "Save As" dialog enter name |
3. Push the @ button to start recording for log file -
4. In "Save As" dialog enter name for log file 6. Work with ROOT freely 200
5. Work with ROOT freely /. Press stop button on recorder 100
« Type commands in the ROOT prompt to stop recording o 1 s s J |
. -4 3 2 -1 0
* Work with GUI |
6. PreSS StOp bUttOn On recorder tO StOp reCOrdIng PaveText. A Pave with several lines of text. | title 65,10 ¥=-4,06609, y=928.521 %
When recording, the user interface And here is an example of a command line recording session:
. | @ ROOT Event Record... o=k 3]
of the recorder shows its current s
]] = hecording rec = new TRecorder () ;
status (recording), and the recording | ESSeTeReloRk ke rec->Start (“record. root”, “RECREATE”) ;

Info in <TRecorderRecording::StartRecording>: Recording started. Log file: record.root

time. The record button is also
replaced by the stop button.

rec—->Stop () ;
Info in <TRecorderRecording::Stop>: Recording finished.

When starting the recorder from a bare Root session, everything will be recorded, e.g. all commands and all graphic objects created during the
session. When starting from an existing Root session, only the already opened canvases with their content will be saved.

REPLAYING SESSION
rec = new TRecorder ()

As for recording, replaying can be done via the command line rec->Replay (“record.root”) ;

] . . . Info 1n <TRecorderReplaying::Initlialize>: Replaying of file bbb.root started
or with the user interface, like for recording.
Info in <TRecorderReplaying::ReplayRealtime>: Replaying finished

ISSUES

« Each GUI event has an fWindow attribute with the ID of the window that it belongs to. RECORDING REPLAYING
» When recording, fWindow is filled with the ID of a window that will not exist anymore at replaying time. oo naw)

1 3c3d9c98 | __ - 1 J2c78e8
Then, how to determine which window to send an event to at replaying time”? 2 | #c7a?8 | _______ | 2 | 42ce639
The algorithm is simple and relies on the determinism of windows creation. When replaying, the windows | 3 | stfde3s [——————-={ 3 | 42cears
state is gradually recreated exactly the same way as when recording. That means that the windows are
always registered in the same order. During recording each window is registered at creation time. So _
the ID of each registered window is known. This ordered list of windows is stored in the log file together [4.,ﬂm _____ SUbSIWIEADY [szcessa
with events. When replaying, pairs of window IDs registered at the same position are created. Each St window 1D fom tme of recording D ot tre widow reaisterec
window registered during recording is paired with each same ordered window registered during replaying. atthe same position n the sequence

When an event should be replayed, its original fWindow ID is replaced by the one of its partner in the list of pairs.
If an appropriate window is not found (has not been registered yet), replaying must be stopped until this window is registered. Otherwise we do not
know which window the event belongs to. In this case, the status field of the player interface is displaying “Waiting...” in red.

How recorded and system events are ordered when replaying Events have to be recorded at usual user speed to ensure that user caused

oo Repiying. RenayRentime and automatically generated events are recorded in the right order.
If there Is any system event in
the queue, it should always ' , =

Replay the next recorded event
be executed before the next

Usually, it is not hard to satisfy that because mouse movements and user
clicks are "slow" in comparison to generating & processing events inside

from the log file
I

|
|
|
|
|
|
|
|
|
l Are there any consequent ROOT events in the queue?
|
|
|
|
|
|
|
|

recorded event is replayed. ! ROOT.

[gVirtualX->EventsPending(]] =
So, at the time of recording, i L Anyway, if the user clicks a button and a new complex GUI (with many
every system event should T U | components) is open, then it is possible to make some action even before all
also be executed before the o e o B o the windows are registered, properly mapped, exposed etc.
next user generated event is recorded. When this kind of event happens, the status field of the player interface is

displaying “Waiting...” in red.

For more information see: http://root.cern.ch
For any questions please use following address: rootdev@root.cern.ch

