
The ROOT Event Recorder/PlayerThe ROOT Event Recorder/PlayerThe ROOT Event Recorder/PlayerThe ROOT Event Recorder/Playere OO e t eco de / ayee OO e t eco de / aye
B Bellenot 1) R Brun 1) Kateřina Opočenská 2) F Rademakers 1)B. Bellenot 1), R. Brun 1), Kateřina Opočenská 2), F. Rademakers 1)

1) CERN – European Organization for Nuclear Research, Geneva, Switzerland
2) Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic) y y , y, g , p

The ROOT framework offers a very complete set of GUI (Graphical User interface) widgets In order to perform Quality Assurance (QA) andThe ROOT framework offers a very complete set of GUI (Graphical User interface) widgets. In order to perform Quality Assurance (QA) and
lid ti f th GUI t d h b d l d t t t th ll th t d l tf (Li /X11 Wi 32 M OSvalidation of the GUI, an event recorder has been developed, to automate the process on all the supported platforms (e.g. Linux/X11, Win32, MacOS

X) The event recorder can also be used for tutorial purposes or even as a bug report tool (e g to illustrate a weird behavior or a crash)X, …). The event recorder can also be used for tutorial purposes, or even as a bug report tool (e.g. to illustrate a weird behavior or a crash).

Features: Types of events recorded:Features:
F ll l tf S i d d ifi l tf b l d

Types of events recorded:
C d li t• Fully cross-platform: Sessions recorded on one specific platform can be replayed on • Command line events

any other supported platform • Commands typed by user (e g "new TBrowser();")any other supported platform.
S ll R d d i d i ROOT fil ll i t h l d l

• Commands typed by user (e.g. new TBrowser();)
GUI t• Small: Recorded sessions are saved in ROOT files, allowing to have long and complex • GUI events, g g p

GUI tests in a small file in regard of e g capture video • Window creation resize movementGUI tests in a small file, in regard of e.g. capture video • Window creation, resize, movement
• Mouse movement, (double) click, drag & dropMouse movement, (double) click, drag & drop
• …

RECORDING SESSIONRECORDING SESSION

There are several way of using the recorder Here are a few examplesThere are several way of using the recorder. Here are a few examples.

1 St t ROOT 1 St t ROOT1. Start ROOT 1. Start ROOT
2 Start recorder GUI: new TGRecorder(); 2 Execute a macro creating a canvas2. Start recorder GUI: new TGRecorder(); 2. Execute a macro creating a canvas

(C fthis creates and display the recorder panel: (e.g. hsimple.C from this creates and display the recorder panel: (g p
$ROOTSYS/tutorials)$ROOTSYS/tutorials)

3. From the “Tools” canvas menu,3. From the Tools canvas menu,
select “E ent Recorder”select “Event Recorder”
Then as previously:Then, as previously:

4 Push the ● button to start recording4. Push the ● button to start recording
5 I "S A " di l t5. In "Save As" dialog enter name

3 Push the ● button to start recording
g

for log file3. Push the ● button to start recording for log file
4. In "Save As" dialog enter name for log file 6. Work with ROOT freely4. In Save As dialog enter name for log file
5 Work with ROOT freely

6 o OO ee y
7 Press stop button on recorder5. Work with ROOT freely 7. Press stop button on recorder

• Type commands in the ROOT prompt to stop recordingType commands in the ROOT prompt
W k ith GUI

to stop recording
• Work with GUI

6 Press stop button on recorder to stop recording6. Press stop button on recorder to stop recording

When recording the user interface And here is an example of a command line recording session:When recording, the user interface
f

And here is an example of a command line recording session:
of the recorder shows its current
status (recording) and the recording rec = new TRecorder();status (recording), and the recording rec->Start(“record.root”, “RECREATE”);

time. The record button is also Info in <TRecorderRecording::StartRecording>: Recording started. Log file: record.roottime. The record button is also
replaced b the stop b tton

...
replaced by the stop button. rec->Stop();

Info in <TRecorderRecording::Stop>: Recording finished.

When starting the recorder from a bare Root session everything will be recorded e g all commands and all graphic objects created during theWhen starting the recorder from a bare Root session, everything will be recorded, e.g. all commands and all graphic objects created during the
i Wh t ti f i ti R t i l th l d d ith th i t t ill b dsession. When starting from an existing Root session, only the already opened canvases with their content will be saved.g g , y y p

REPLAYING SESSIONREPLAYING SESSION
rec = new TRecorder();

As for recording replaying can be done via the command line
();

rec->Replay(“record.root”);As for recording, replaying can be done via the command line
ith th i t f lik f di

p y();
Info in <TRecorderReplaying::Initialize>: Replaying of file bbb.root started

or with the user interface, like for recording.
p y g p y g

..., g
Info in <TRecorderReplaying::ReplayRealtime>: Replaying finishedp y g p y p y g

ISSUESISSUES

• Each GUI event has an fWindow attribute with the ID of the window that it belongs to• Each GUI event has an fWindow attribute with the ID of the window that it belongs to.
• When recording, fWindow is filled with the ID of a window that will not exist anymore at replaying time. When recording, fWindow is filled with the ID of a window that will not exist anymore at replaying time.

Then how to determine which window to send an event to at replaying time?Then, how to determine which window to send an event to at replaying time?
Th l ith i i l d li th d t i i f i d ti Wh l i th i dThe algorithm is simple and relies on the determinism of windows creation. When replaying, the windowsg p p y g,
state is gradually recreated exactly the same way as when recording That means that the windows arestate is gradually recreated exactly the same way as when recording. That means that the windows are
always registered in the same order. During recording each window is registered at creation time. Soalways registered in the same order. During recording each window is registered at creation time. So
the ID of each registered window is known This ordered list of windows is stored in the log file togetherthe ID of each registered window is known. This ordered list of windows is stored in the log file together
with events When replaying pairs of window IDs registered at the same position are created Eachwith events. When replaying, pairs of window IDs registered at the same position are created. Each

i d i t d d i di i i d ith h d d i d i t d d i l iwindow registered during recording is paired with each same ordered window registered during replaying.g g g p g g p y g
When an event should be replayed its original fWindow ID is replaced by the one of its partner in the list of pairsWhen an event should be replayed, its original fWindow ID is replaced by the one of its partner in the list of pairs.
If i t i d i t f d (h t b i t d t) l i t b t d til thi i d i i t d Oth i d tIf an appropriate window is not found (has not been registered yet), replaying must be stopped until this window is registered. Otherwise we do not pp p (g y), p y g pp g
know which window the event belongs to In this case the status field of the player interface is displaying “Waiting ” in redknow which window the event belongs to. In this case, the status field of the player interface is displaying Waiting... in red.

How recorded and system events are ordered when replaying Events have to be recorded at usual user speed to ensure that user causedHow recorded and system events are ordered when replaying Events have to be recorded at usual user speed to ensure that user caused
and automatically generated events are recorded in the right order.

If there is any system event in
a d auto at ca y ge e ated e e ts a e eco ded t e g t o de

If there is any system event in
the queue it should always Usually it is not hard to satisfy that because mouse movements and userthe queue, it should always
b t d b f th t

Usually, it is not hard to satisfy that because mouse movements and user
li k " l " i i t ti & i t i idbe executed before the next clicks are "slow" in comparison to generating & processing events inside

recorded event is replayed
g g g

ROOTrecorded event is replayed. ROOT.

So at the time of recording Anyway if the user clicks a button and a new complex GUI (with manySo, at the time of recording, Anyway, if the user clicks a button and a new complex GUI (with many
every system event should components) is open, then it is possible to make some action even before allevery system event should
also be executed before the

components) is open, then it is possible to make some action even before all
the windows are registered properly mapped exposed etcalso be executed before the the windows are registered, properly mapped, exposed etc.

next user generated event is recorded When this kind of event happens the status field of the player interface isnext user generated event is recorded. When this kind of event happens, the status field of the player interface is
di l i “W iti ” i ddisplaying “Waiting...” in red.p y g g

For more information see: http://root.cern.ch
For any questions please use following address: rootdev@root.cern.chy q p g @

