CHEP'09 Prague - 24th March 2009

Commissioning the ATLAS Inner Detector Trigger

Mark Sutton University of Sheffield

on behalf of the ATLAS Collaboration

24th March 2009

Preface

- LHC will take first collisions later in the year
- Bunch crossing every 25 ns 40 MHz rate
 - Data storage capability ~200 Hz
 - Reduction of around 200000 to 1 required
- Between up to ~25 (soft) pp interactions per bunch crossing
 - Interesting high *p_T* interactions complicated by "pile-up"
- Almost all interesting signatures contain leptons or high momentum tracks
- To maximise the LHC physics potential we want to commission and understand the tracking in the Trigger as much as possible before collisions

The ATLAS Trigger System

- Level 1
 - Hardware based, pipelined trigger, coarse granularity, largely Calorimeter and Muon system based.
 - 2.5 microsecond latency
- High Level Trigger Level 2 and Event Filter
- Software based, farms of commodity CPU's and ethernet
- Level 2
 - Seeded by Level 1 in Regions of Interest
 - Full detector granularity, all detector subsystems
- Event Filter
 - Seeded by Level 2
 - Access to complete event, reconstruction similar to Offline

The ATLAS Detector

The Inner Detector

The Inner Detector

Commissioning

- We want to commission the High Level Trigger system and the reconstruction algorithms to be ready for collisions as much as possible before actual collision data taking
- Event Steering, Event Streaming, monitoring frameworks,
 - Technical runs Monte Carlo data injected in to DAQ and HLT system
 - Cosmic ray muons see talks by Alessandro Di Mattia and Andrea Ventura
- Commissioning the Inner Detector Tracking algorithms
 - Cosmic muons different event topology, but realistic detector alignment, noise occupancy and data realistic data preparation
- To study algorithm efficiency, need orthogonal or passthrough triggers
 - Muon triggers, Level 1 from hits in muon trigger chambers Pass through HLT with large prescale unbiased by HLT, but lower efficiency for Inner Detector tracks
 - Level 1 Fast-OR from the TRT improved purity for Inner Detector tracks
- For alignment studies, want to maximise number of high momentum tracks with (as much as possible) uniform detector illumination
 - Select good Inner Detector tracks using the High Level Trigger
 - HLT Inner Detector Cosmic stream any L1 trigger also with Inner Detector track from tracking HLT biased by HLT selection

Collected Cosmic Data

- From September to December 2008, extended Combined Inner Detector Cosmic run where the HLT tracking has been exercised concentrate on results from this run.
- Currently greater than 300 million events collected.

Comic Muon Reconstruction

- Cosmic muons have characteristic up-down tracks.
- Can have very large impact parameter with respect to the nominal beamline
 - Level 2 Trigger algorithms are optimised for collisions outward going tracks originating from the beamline, with a small impact parameter.

HLT Tracking for Cosmics

- Three algorithms for the ID Cosmic Stream used during the cosmic runs...
 - SiTrack Silicon hit lookup table based algorithm with extension to include TRT hits
 - Using seed hits, extend tracks candidates using lookup table to identify likely location of additional hits consistent with tracks
 - IDScan Silicon hit histogramming based algorithm allowing extension of tracks to TRT
 - Finds likely *z* position of vertex and identifies potential tracks consistent with this vertex by clustering silicon hits in η ϕ and $1/p_T$ ϕ space
 - TRT Segment Finder
 - Special cosmic algorithm for the TRT barrel, finds tracks using only TRT hits, uses wrapped offline algorithm but restricted to the regions $\pi/2 \pm \pi/4$ and $-\pi/2 \pm \pi/4$
- All algorithms highly configurable, both silicon algorithms optimised for collisions and tracks with a small impact parameter with respect to the beamline
- Event Filter tracking Offline algorithm. For Combined Cosmic Run, running in evaluation mode near end, performance studies still ongoing will concentrate on the Level 2 algorithms

Dealing with Large Impact Parameter

- IDScan uses collision algorithm with a barrel preprocessing stage to shift the coordinate frame
- Tracks still originate from origin constrained by efficiency of the shift, but allows exercise of algorithm nearer to collision mode
- SiTrack can also run on shifted spacepoints, but in addition it allows track seeds to originate anywhere in the detector and relaxes the track pointing constraint

Trigger Reconstruction

Monitoring

• Trigger performance monitored both offline and online (see talk by Alina Corso-Radu)

Monitoring

Event Timing

- For cosmic running, the Pixel detector reads out 8 successive bunch crossings
- The SCT reads out 3 timing adjusted so that most hits arrive in the central bunch crossing.

- Events with Offline track with at least 3 Silicon hits in both the upper and lower halves of the detector
- For the TRT hits must come within a specified time window, the Event Phase (EP) is the global time with respect to the nominal bunch crossing time.
- For times >25 ns the efficiency starts to fall as hits are outside time window

- Si Algorithms approximately flat efficiency >90% for events where the cosmic track passes within the inner radius of the SCT
 - SiTrack slightly higher efficiency than IDScan, but larger rate of fake, low p_T tracks

Detector Alignment

- Large statistics from Inner Detector Cosmic Stream allow significant improvement in detector alignment in Barrel Region
- Pixel spacial resolution improves from ~130 μm to near optimal 24 μm , similar improvement for SCT
- In turn, alignment improves resolutions and trigger performance *M.Sutton – Commissioning the ATLAS Inner Detector Trigger*

CHEP'09 Prague - 24th March 2009

The Future - Commissioning with Beam

• Cosmic muons are good for aligning detector elements at $\phi = \pm \pi/2$, not so good for modules at $\phi = 0$ and π or in the endcaps SCT EndCaps beam splash event 04-02-09

- Will want to exercise trigger as much as possible with first beam. Even single beam will provide tracks from beam-gas interactions and beam halo muons, although at lower angles of incidence
 - Good for end cap alignment, track reconstruction at low angles
 - Maybe not so good for detectors backgrounds not well understood at this stage

Summary and Outlook

- Tracking in the ATLAS HLT is essential to achieve the physics goals of the LHC
- The Level 2 Inner Detector Trigger has been routinely operated during cosmic running and commissioning is progressing well
 - Over 300 million cosmics collected, over 400000 with Pixel spacepoints
 - Improved understanding of the detector and trigger with REAL data, timing, alignment, noise occupancy...
- Event Filter tracking used for end of cosmic run, performance studies underway
- The Inner Detector Trigger will be ready for first beam, emphasis will be on stable and SAFE running
 - Pixel detector off
 - SCT with reduced bias voltage
- ATLAS will see its first collisions later this year, the Inner Detector Trigger Commissioning is well advanced and will be ready to rise to this challenge