

A New Tool For Measuring Detector Performance in ATLAS

 Arno Straessner – TU Dresden Matthias Schott – CERN

on behalf of the ATLAS Collaboration

Computing in High Energy and Nuclear Physics Prague March 21-27, 2009

Outline

- The Physics: Detector Performance
- An Infrastructure For Performance Data
- Current Implementation in ATLAS
- Outlook

The Physics: Detector Performance

- Complex detector with main subsystems:
 - Inner tracking
 - Calorimetry
 - Muon tracking
- 2500 physicists perform analyses

- All need detailed information about detector performance
 - General performance
 - Trigger, reconstruction and identification efficiencies
 - Resolutions of energy, momenta, angles, ...
 - Energy and momentum scales
 - Time-dependent performance

detector response

Detector Performance Tool

- Commonly applied method to measure performance in data:
 → Tag & Probe
- Example: measure muon trigger efficiency in Z→μμ events
 - Identify triggered and well measured muon:
 → Tag
 - Use Z decay kinematics to find the 2nd muon:
 - → Probe
 - Check if 2nd muon was triggered → efficiency
- Many more examples:
 - $Z\rightarrow$ ee, J/psi \rightarrow ee, Z+jets for tau fake rates, ...
- Common infrastructure to
 - Implement the object tag and event selection
 - Store the collection of probe objects
 - Analyse the probes
 - → efficiencies and detector response
 - Store matrices with efficiency, resolution and scale information

Clients:

- Performance groups
- Fast Monte Carlo simulation
- Individual Physicists

Application: Performance Groups

- Early version of the package was used in ATLAS physics book
- Estimation of muon identification and trigger efficiencies:

- Performance Tool is the ATLAS solution for:
 - Direct use in Standard Model physics → closely related to performance groups
 - Benchmark comparisons for reconstructed objects used in searches etc.

The Procedure

- ATLAS data storage
 - Event Summary Data (ESD)
 - Analysis Object Data (AOD)
 - Derived Physics Data (DPD)
- 1st step:
 - Signal selection and object tag
 - Input: ESD, AOD, DPD
 - Grid task
- → Performance-DPD with probe objects
- 2nd step:
 - Performance determination
 - Executed on local cluster
 - Overall fits might be necessary (background shape, ...)
- → Performance database

Probe Object Data

- Probe objects are usually: tracks, reconstructed leptons, jets
- Only parameters necessary for further analysis are stored → can be freely defined
- Example for electron calorimeter identification efficiency:

Electron reconstruction category
Electron quality cut
Electron trigger information
Reconstructed Z mass from tag+probe electron

To calculate number of trials and successes for efficiency

Z boson p_T Angular difference (ΔR) to next jet Jet multiplicity Sum of jet p_T Max of jet p_T Electron isolation variables

Interesting variables for differential efficiencies

Matching angle to generator truth electron

Optional for Monte Carlo verification of the method

- Map<tag,float> with string tags in meta-data → flexible, user-friendly structure
- Small data size: ~ 0.33 kB per event in DPD file

Performance Database

- Objects stored:
 - N-dimensional matrices to map detector areas and physics
- Typically 4-dimensional, not larger because of
 - → data statistics per matrix entry
 - → storage space
- Matrix defined by N axes objects with free binning
- Matrix entries:
- For "simple" efficiency calculations:

- Number of trial and success counts
- With side-band subtraction of background:

- Data and background histograms
- Pre-defined fitting functions
- Background subtraction assuming predicted S/B ratio

Performance Database

Matrix entries for detector response:

- Resolution/scale histogram for Monte Carlo → data reference
- Smearing functions for generator level \rightarrow fully simulated Monte Carlo

- Once ATLAS data is available:
 - Smearing functions for generator level → data projections
 - To be used in fast detector simulations
- Matrix entries for resolution and scaling:
- ROOT Histograms → in future: RooWorkspace of RooFit

Matrix Objects

- Methods to calculate efficiency and resolution from stored data

- Classical and Bayesian efficiencies and uncertainties
- Efficiencies and detector response using fits to data and background
- Caching: fit result is stored and then directly accessed

- All matrix entry objects are additive:
 - Distributed analysis
 - Averaging over different run periods
- Projections to any number of axes is supported:

- Slices of matrices → cuts
- Not trivial for resolutions

 Hide complexity from user

Implementation in ATHENA

ATHENA = ATLAS software framework

- "Algorithm" is executed at each event
- Uses "Tool" to perform signal selection
- Intermediate data is stored in
 - DPD
 - Transient memory "Storegate"
- Performance determination
- Output to ATLAS official conditions database:
 - LCG product: COOL database
 - With Interval-Of-Validity (IOV)

Supported Database Structures

- ATLAS official conditions database: LCG Pool/COOL → for collaborative use
- Plain ROOT file → for online Tier-0 applications, development, debugging and individual use
- Unique database identifier:

Database ID	Description	Examples
Object	Physics Parameter	Muon, Electron, Tau, Jet,
Туре	Performance Parameter	Efficiency, Scale/Resolution, Fake- Rate
Channel	Physics Channel	Z→µµ, J/psi→ee, tt,
Author	Author's name	MuonPerformanceGroup, PJenni,
RecoSWV	Software version (ATLAS Metadata Interface tag)	14.5.2.1
IOV	Interval of validity (runs), For MC: simulation software release	Run 1000-2000 13.0.1

Database Object Structure

Matrix

Unique ID Database ID

Payload:

- Vectors of integers and floats
- Data vectors
 - Matrix entries
- Info vectors
 - Matrix dimensions and axes definitions

COOL - Database

DATA	IOV
Data [float, float, int, int, float,]	10-23
Data [float, int, int]	12-35
Data [Reference to ROOT–File]	11-18

Pool / COOL / ROOT

Application: Fast Monte Carlo Simulation

- Fast Monte Carlo simulation
 - Correction of the generated 4-vectors
 - Smearing and efficiency correction
- Ideal place for input from performance tool → currently "hand-made" input tables
- Communication via COOL database → to be implemented

- → Reference numbers from data for systematic detector studies
- → towards a "realistic" Monte Carlo: possibility to map on run-time effects

File Sizes

- Probe DPD files are much smaller than typical AOD:
 - 200 kB/event in AOD → 0.3-0.5 kB/event in DPD
- DPD files produced on grid and collected on local storage

- Matrix files eventually stored in COOL
 - Depends on number of dimensions
 - Potentially large for a database if full histograms are stored
 - For 2x50 bin histograms in 20x20x20 matrix ~ 3 MB

Current Status

- All underlying functionalities are implemented
 - Tagging framework
 - DPD creation
 - Matrix representations and operations
 - COOL and ROOT database operations
 - → converters

- Working use-cases:
 - Electron reconstruction and identification efficiency
 - Muon reconstruction and identification efficiency
 - Muon trigger efficiency
 - Inner detector tracking efficiency with Z and J/psi tags

Summary and Outlook

- Performance tool provides useful and standardized service to the collaboration
- Performance data can be distributed via ATLAS central database
- Interesting use cases:
 - Individual physics analysis
 - Performance groups
 - Realistic Monte Carlo simulation
- Full working analyses planned to be available in a month's time
- "Online" exercise on Tier-0 center to be done
- Many more performance analyses to be integrated
- Currently evaluating structures for dealing with systematic uncertainties

Backup

Backup

Current Analysis Structure

