

Outline

recent developments on aspects of offline software

→ I will restrict myself and give a LHC centric view

geometry developments

→ use-cases for full and fast geometries

reconstruction tools

➡ highlight some interesting developments and methods

interactive event displays

→ usage for commissioning and offline analysis of real data

• I will not cover e.g. developments for Linear Collider

→ more information: talk #375 on Marlin, poster #373 on ILCSoft, ...

Detector Description

• LHC detectors are complex

- experiments developed gemoetry models, translation into G4, G3...
- ➡ huge number of volumes
- ➡ ATLAS/CMS significantly more material in trackers than e.g. CDF and D0

• physics requirement:

control material
close to beam pipe
at % level

	model	placed volumes
ALICE	Root	4.3 M
ATLAS	GeoModel	4.8 M
CMS	DDD	2.7 M
LHCb	LHCb Det.Des.	18.5 M

Markus Elsing

Realistic Detector Description

huge effort in experiments

- → implement very detailed description
- put each individual detector part on balance and compare with model
- example: measured CMS and ATLAS tracker compared to simulation
- large MC productions to study effects of
 - detector material (e.g. additional material in tracker)
 - ➡ misalignment
 - very active field over past years in experiment physics challenges

• example: misalignment in G4

→ implement clearances in geometry
→ avoid G4 volume clashes

ATLAS	estimated from measurements	simulation
Pixel package	201 kg	197 kg
SCT detector	672 ±15 kg	672 kg
TRT detector	2961 ±14 kg	2962 kg
CMS	estimated from	simulation

CMS	estimated from measurements	simulation	Pre
active Pixels	2598 g	2455 g	limina
full detector	6350 kg	6173 kg	ury

Full and Fast Tracking Geometries

complex G4 geometries not optimal for reconstruction

- ➡ simplified tracking geometries
- material surfaces, field volumes (CMS)

reduced number of volumes

- blending material to surfaces/volumes
- surfaces with 2D material density maps, templates per Si sensor...

	G4	tracking
ALICE	4.3 M	same *1
ATLAS	4.8 M	10.2K *2
CMS	2.7 M	3.8K *2
LHCb	18.5 M	30

*1 ALICE uses full geometry (TGeo)
*2 plus a surface per Si sensor

Embedded Navigation Schemes

embedded navigation scheme in tracking geometries

- ➡ G4 navigation uses voxelisation as generic navigation mechanism
- embedded navigation for simplified models
- ➡ used in pattern recognition, extrapolation, track fitting and fast simulation

• example:

- ATLAS developed geometry of connected volumes
- boundary surfaces connect neighboring volumes to predict next step

ATLAS	G4	tracking	ratio
crossed volumes in tracker	474	95	5
time in SI2K sec	19.1	2.3	8.4

(neutral geantinos, no field lookups)

Fast Simulation

fast simulation engines

- ➡ fast calo. simulation (parameterization, showers libraries, ...)
- ➡ simplified (tracking) geometries
- ➡ simplify physics processes w.r.t. G4
- → output in same data model as full sim.
- ⇒ able to run full reconstruction (+trigger)

	G4	fast sim.
CMS	360	0.8
ATLAS	1990	7.4

- ttbar events, in kSI2K sec
- G4 differences: calo.modeling , phys.list, eta cuts, b-field

CPU for full G4 exceeds computing models

 simulation strategies of experiments mix full G4 and fast simulation

Reconstruction

- software organization follows common pattern
 - "natural" architecture
- similar layer of tracking and vertexing tools
 - → fitters, propagation, geometry...
 - little sharing of code across experiments
- common code base for offline and High Level trigger (HLT) is a success
 - full and regional reconstruction using common reconstruction tools
 - different algorithm sequencing in HLT for early rejection
 - special code for time critical parts

Markus Elsing

Jet-Fitter: b-Tagger

conventional vertex tagger

➡ fits all displaced tracks into a common geometrical vertex

Jet-Fitter

- b-/c-hadron vertices and primary vertex approximately on the same line
- → fit of 1..N vertices along B-hadron axis
- mathematical extension of conventional Kalman Filter for vertex fitting

• up to 40% better light rejection

- much improved control of charm rejection
- ➡ best b-tagger in ATLAS

Brem. Fitting for Electrons

- material in Inner Detectors
 - \rightarrow e-bremstrahlung and γ -conversions
- compensate using sophisticated tracking tools:
 - → brem. point in global- χ^2 track fit
 - ➡ Kalman filter with dynamic noise adjustment

• Gaussian Sum filter (GSF)

- approximate Bethe-Heitler distribution as Gaussian mixture
- state vector after material correction becomes sum of Gaussian components
- GSF resembles set of parallel Kalman filters for N components
- default brem.fitter in CMS and ATLAS

Jets: Topological Clustering

3D topological clustering

- ➡ fully explores lateral and longitudinal segmentation of ATLAS calorimeters
- → local hadron calibration
 - classify clusters as e.m. or hadronic
 - cell weights for non-compensation
 - out of cluster corrections (thresholds)
 - dead material corrections
 - final jet level correction restores linearity at 2% level
- jet shape and jet mass significantly improved

track based jet correction

- ➡ fraction of jet energy seen by tracks used to further correct energy
- alternative to particle flow

➡ actively developed in CMS

Commissioning and Data Preparation

detector calibration

- started with test beam data
- experiments did calibration tests in 2008 to prepare for data taking
- ➡ first beam and halo events
- → large samples of cosmic events

intense program of software developments

- instrument all reconstruction to use conditions information
- procedures to extract constants from data and from online information (detector status, etc...)
- results been feed back also to simulation

reprocessing exercises

 validate results and study performance

Detector Alignment

large tracking systems

- ➡ 100K(36K) D.O.F. for CMS(ATLAS)
- hardware alignment systems

• different approaches

- resolve global-χ² using spare matrix techniques (e.g. Millipede II)
- ➡ Kalman Filter and local approaches

so called "weak modes"

- \rightarrow deformations that leave χ^2 invariant
- ➡ tracks collisions and cosmics, ...

series of LHC alignment workshops

- ➡ 3rd planned for June 15-16
- initial alignment results
 - based cosmics or beam induced particles (LHCb velo)

Event Displays and Commissioning

commissioning the detector benefits from a good display

- online event display integral part of data quality monitoring
- ➡ offline analysis and visual debugging

functionality vs need for intuitive user interface

 must be easy to visualize the important aspects of events

different techniques

- ➡ adequate projections
- ➡ navigation in the event
- ➡ interactive event analysis

IGUANA

0.0

examples for 2D projections

Example for Navigating the Event

Example for Navigating the Event

Interactivity and Event Visualization

Interactivity

- → requires full integration of graphics with software framework
- → sometimes conflicting with portability (runs on my laptop ?)
- ➡ many use-cases
- example: Virtual Point I and FATRAS
 - ➡ single particle gun
 - ➡ fast simulation
 - ➡ reconstruction
 - ➡ visualization
 - → inside ATHENA framework
 - ➡ control via GUI

Virtual P	oint 1 [run# 0, event# 27] —	
Quick Launch Configuration Style		
- Controls: 3DCocktail	3D Cocktail	
	>>> 3DCocktail <<< >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
General Guides Geo FatrasGun Track ▲ Particle type PDG Code Particle Name ▲ 11 e- ■ ■ 12 nu(e)0 13 mu- 14 nu(mu)0 15 tau- 16 nu(tau)0 22 gamma0 23 Z0 24 W+ 111 pi0 113 rho(770)+ Antiparticle	VC ATLAS	
Womentum Value: 28.000 GeV Eta: 0.900 Phi: 4.000 Vertex position (x,y,z) [mm] 0.000 0.000		
Note: Settings take effect from paytevent	Rotz Roty	Zoom
Event [run# 0, event# 27]	New event: run# 0, event# 27 [3DCocktail/Hits] [PRDCollHandle_TRT_TRT_DriftCircles] Found 7096 (19 shown) PRDs in container 'TRT_DriftCircles' [2DCocktail/Cells] No LA: Dinits in Store Gate for this event	
	[3DCocktail/Cells] No Tile Digits in Store Gate for this event	•
	[3DCocktail/Cells] Unable to retrieve MBTS Container	

CmsShow/Fireworks

- → physics oriented event display
- ➡ ROOT + CMS framework light
- → EVE based graphics display
- → User-interface implemented in **ROOT GUI**
- light installation, runs on OS X and other platforms

Actions

Actions

Help

<u>H</u>elp

Interactive Analysis in GAUDI

GAUDI python

- ➡ histogramming
- event visualization with PANORAMIX
- ➡ interactive session
- ➡ execute algorithm
- ➡ inspect event

Summary

experiments use full and simplified geometries

- → match physics requirements of accurate G4 description
- ➡ and needs for fast reconstruction and fast simulation

reconstruction software is getting mature

- → more sophisticated reconstruction tools to explore all details of the events
- → common code base for offline and HLT reconstruction is a success

experiments focus on commissioning

- → procedures to calibrate and alignment the detectors
- → increased use of conditions data in reconstruction and simulation

event displays play their role online and offline

- → indispensable for the commissioning of the detectors and their software
- → navigation to relevant information in complex events and interactivity

Acknowledgements

Special thanks to: W.Adam, F.Ambroglini, J.Apostolakis, D.Barberis, F.Beaudette, R.Brun, F.Cossutti, A.Dell'Acqua, G.Flucke, A.Gheata, G.Gorfine, A.Gritsan, J.Harvey, W.Hulsbergen, P.Janot, T.Kittlemann, D.Kovalskyi, T.Kuhl, L.Malgeri, S.Menke, E.Migliore, K.Moenig, A.Mrak-Tadel, M.Mulders, G.Piacquadio, D.Quarrie, A.Rizzi, D.Rousseau, T.Ruf, A.Salzburger, M.Schiller, M.Tadel, V.Tsulaia, W.Waltenberger, D.Wicke

GeoModel Toolkit

bibrary of geometrical primitives

- designed as data layer
- describing large and complex detector systems
- ➡ minimal memory consumption.

memory optimization

- shared instancing with reference counting
- compressed representation of Euclidean transformations
- parameterizations through embedded symbolic expressions of transformation fields

native mechanism of misaligning detectors

'alignable' delta transformations

- GeoModel serves as central storage of the detector description for all clients
 - GeoModel description is translated to Geant4 format on the fly, using special translator (Geo2G4)

visualization of

volume clashes