
Philippe Calfayan, Ludwig-Maximilians-Universität München
Matthias Schott, CERN Geneva

Parallel computing of ATLAS data with PROOF at
the Leibniz-Rechenzentrum Munich (LRZ)

1. PROOF based Analyses at LRZ
The Parallel ROOT Facility (PROOF)

◦Analyses based on TSelector
(compiled or interpreted)

◦Parallelisation at event level

◦Use of heterogeneous nodes
possible if TSelector compiled
in the remote environment

◦Scalability with respect to num-
ber of users and number of
nodes

SchedulerFile Catalog

CPUs

Storage

Proof Cluster

Query

Merged
Output

Analysis Code
Data File List

Client − Local PC

Master

Strategies for PROOF Analyses at LRZ

2. Comparison of storage strategies
◦Three storage systems have been considered for the input data files:

→ local disks: data are stored on each local node
→dcache: data access via client/server connections, RAID6, 10GB switch
→ lustre: filesystem optimized for parallel computing, all nodes can access the

data without a dedicated server

◦A simple test analysis, based on the Z boson reconstruction and the generation
of control histograms, is processed via a ROOT based TSelector, using ROOT
v5.20. A complex variant includes 200000 tanh operations per event.

◦ Input data files are in D3PD format (native ROOT format), and contain 1.6 million
of events with a size of nearly 4kB per event.

◦The speedup factor S describes the gain of processing time Tn using n parallel
cores compared to the time Ts with one single core, such that S =

Ts

Tn
.

◦The scalability of the PROOF cluster is limited by the data transfer rate of the
storage systems, as shown in the figures below.

Number of cores
10 20 30 40

Sp
ee

du
p 

fa
ct

or

10

15

20

25

30

35

complex analysis

dcache

lustre

local

Number of cores
0 10 20 30 40

Sp
ee

du
p 

fa
ct

or

0

5

10

15

simple analysis

dcache

lustre

local

3. Multi-user applications
◦A realistic use of PROOF would imply the management of multiple users simulta-

neously. Tests are carried out with the same setup as in (2).

◦Only one PROOF cluster has been set up. Each user considered opens a new
session using the same cluster.

◦The analysis used for the tests is the complex variant of the one in (2), so that
effects of the data transfer rate can be neglected.

◦The Lustre filesystem has been chosen for these tests, and it is assumed that all
users perform their analyses on all available cores (n = 40).

◦Effects of potential file caching have not been prevented.

◦Having U users, the speedup S is expected to be divided by U and the time T to
longer by a factor U . The figures below confirm the scalability.

◦ In the plots, when U > 1, the time T and the factor S that are shown are the
average of those relative to each PROOF session.

Number of users

1 2 3 4

A
ve

ra
ge

 p
ro

ce
ss

in
g 

tim
e 

[s
]

100

200

300

400

Number of users

1 2 3 4

A
ve

ra
ge

 s
pe

ed
up

 fa
ct

or

0.4

0.6

0.8

1

4. Performance with ATLAS pool files
◦The ATLAS package AthenaROOTAccess allows to read ATLAS pool files (as

AOD) by converting the included persistant tree into a ROOT transient tree.

◦Processing AOD input files with PROOF and a compiled C++ analysis is not pos-
sible with CINT dictionaries, because of CINT limitations to handle the C++ code
used in the ATLAS pool classes.

◦We compiled a test analysis within the ATLAS CMT environment and generated
the according REFLEX dictionary, using the Athena release v14.2.23. Two ver-
sions of the analysis are considered: one is based on a compiled C++ event loop,
while the other one accesses the transcient tree with Python (via TPython).

◦The test analysis runs over nearly 12500 events of a W → µν simulation (Athena
v14.2.20,

√
s = 10 TeV), using Lustre. It calculates the W transverse mass 10k

times, and plots control histograms. Results are shown below.

◦Comparable performances are obtained for both versions of the analysis in the
case where the calculation of the transverse mass is not repeated.

Number of cores
0 10 20 30 40

Pr
oc

es
si

ng
 ti

m
e 

[s
]

0

200

400

600

800 ARA with Python

ARA with C++

Number of cores
0 10 20 30 40

Sp
ee

du
p 

fa
ct

or

0

2

4

6

8

10

12

ARA with Python

ARA with C++


