
Philippe Calfayan, Ludwig-Maximilians-Universität München
Matthias Schott, CERN Geneva

Parallel computing of ATLAS data with PROOF at
the Leibniz-Rechenzentrum Munich (LRZ)

1. PROOF based Analyses at LRZ
The Parallel ROOT Facility (PROOF)

◦Analyses based on TSelector
(compiled or interpreted)

◦Parallelisation at event level

◦Use of heterogeneous nodes
possible if TSelector compiled
in the remote environment

◦Scalability with respect to num-
ber of users and number of
nodes
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Strategies for PROOF Analyses at LRZ

2. Comparison of storage strategies
◦Three storage systems have been considered for the input data files:

→ local disks: data are stored on each local node
→dcache: data access via client/server connections, RAID6, 10GB switch
→ lustre: filesystem optimized for parallel computing, all nodes can access the

data without a dedicated server

◦A simple test analysis, based on the Z boson reconstruction and the generation
of control histograms, is processed via a ROOT based TSelector, using ROOT
v5.20. A complex variant includes 200000 tanh operations per event.

◦ Input data files are in D3PD format (native ROOT format), and contain 1.6 million
of events with a size of nearly 4kB per event.

◦The speedup factor S describes the gain of processing time Tn using n parallel
cores compared to the time Ts with one single core, such that S =

Ts

Tn
.

◦The scalability of the PROOF cluster is limited by the data transfer rate of the
storage systems, as shown in the figures below.
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3. Multi-user applications
◦A realistic use of PROOF would imply the management of multiple users simulta-

neously. Tests are carried out with the same setup as in (2).

◦Only one PROOF cluster has been set up. Each user considered opens a new
session using the same cluster.

◦The analysis used for the tests is the complex variant of the one in (2), so that
effects of the data transfer rate can be neglected.

◦The Lustre filesystem has been chosen for these tests, and it is assumed that all
users perform their analyses on all available cores (n = 40).

◦Effects of potential file caching have not been prevented.

◦Having U users, the speedup S is expected to be divided by U and the time T to
longer by a factor U . The figures below confirm the scalability.

◦ In the plots, when U > 1, the time T and the factor S that are shown are the
average of those relative to each PROOF session.
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4. Performance with ATLAS pool files
◦The ATLAS package AthenaROOTAccess allows to read ATLAS pool files (as

AOD) by converting the included persistant tree into a ROOT transient tree.

◦Processing AOD input files with PROOF and a compiled C++ analysis is not pos-
sible with CINT dictionaries, because of CINT limitations to handle the C++ code
used in the ATLAS pool classes.

◦We compiled a test analysis within the ATLAS CMT environment and generated
the according REFLEX dictionary, using the Athena release v14.2.23. Two ver-
sions of the analysis are considered: one is based on a compiled C++ event loop,
while the other one accesses the transcient tree with Python (via TPython).

◦The test analysis runs over nearly 12500 events of a W → µν simulation (Athena
v14.2.20,

√
s = 10 TeV), using Lustre. It calculates the W transverse mass 10k

times, and plots control histograms. Results are shown below.

◦Comparable performances are obtained for both versions of the analysis in the
case where the calculation of the transverse mass is not repeated.
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