Philippe Calfayan, Ludwig-Maximilians-Universitat Minchen

Matthias Schott, CERN Geneva

Parallel computing of ATLAS data with PROOF at
the Lelbniz-Rechenzentrum Munich (LRZ)

1. PROOF based Analyses at LRZ

The Parallel ROOT Facility (PROOF)

Proof Cluster

a N
Storage

o Analyses based on TSelector
(compiled or interpreted)

[File Catalog]

o Parallelisation at event level ‘Q ‘

oUse of heterogeneous nodes -
possible if TSelector compiled B
In the remote environment

Data File List
Analysis Code

- i :
- |
] Merged |
' Output ;
A

lient — Local PC ‘

@)

o Scalability with respect to num-
ber of users and number of
nodes

Strategies for PROOF Analyses at LRZ

N
N
AthenaROOQOTAccess / ROOT based TSelector

,,166(\)(3[?/9“ (compiled C++ / Python) -

e I |

2 PROOF Cluster
D*PD Maker 10 Opteron nodes

User Analysis

A

A 4 cores, 8GB RAM / node
aP !

DPD ’ ROOT based TSelector <

1-10kb/evt (CompllediCii)
\/

2. Comparison of storage strategies

o Three storage systems have been considered for the input data files:

— local disks: data are stored on each local node
— dcache: data access via client/server connections, RAID6, 10GB switch

— lustre: filesystem optimized for parallel computing, all nodes can access the
data without a dedicated server

o A simple test analysis, based on the Z boson reconstruction and the generation
of control histograms, is processed via a ROOT based TSelector, using ROOT
v5.20. A complex variant includes 200000 tanh operations per event.

o Input data files are in D’PD format (native ROOT format), and contain 1.6 million
of events with a size of nearly 4kB per event.

o The speedup factor S describes the gain of processing time T, using n parallel

cores compared to the time 7 with one single core, such that S = %

o The scalablility of the PROOF cluster is limited by the data transfer rate of the
storage systems, as shown in the figures below.

35—

Speedup factor
Speedup factor

25—

10—

/

complex analysis

20
B simple analysis

—&— dcache —&— dcache

15—

lustre lustre

—@— |ocal —&@— |ocal

10—

[| | | | 0 I I I | | 1 1 1 | 1 1 1 | I I I | |]

10 20 30 40 0 10 20 30 40
Number of cores Number of cores

3. Multi-user applications

o A realistic use of PROOF would imply the management of multiple users simulta-
neously. Tests are carried out with the same setup as in (2).

o Only one PROOQOF cluster has been set up. Each user considered opens a new
session using the same cluster.

o The analysis used for the tests Is the complex variant of the one In (2), so that
effects of the data transfer rate can be neglected.

o The Lustre filesystem has been chosen for these tests, and it is assumed that all
users perform their analyses on all available cores (n = 40).

o Effects of potential file caching have not been prevented.

o Having U users, the speedup S Is expected to be divided by U and the time T’ to
onger by a factor U. The figures below confirm the scalability.

olIn the plots, when U > 1, the time T and the factor S that are shown are the
average of those relative to each PROOF session.

D

o

O
I

Average speedup factor

w

o

O
I

Average processing time [s|

200

0.4

100—

I I I I I I I I
1 2 3 4 1 2 3 4

Number of users

Number of users

4. Performance with ATLAS pool files

o The ATLAS package AthenaROOTAccess allows to read ATLAS pool files (as
AOD) by converting the included persistant tree into a ROOT transient tree.

o Processing AOD Iinput files with PROOF and a compiled C++ analysis Is not pos-
sible with CINT dictionaries, because of CINT limitations to handle the C++ code
used in the ATLAS pool classes.

o We compiled a test analysis within the ATLAS CMT environment and generated
the according REFLEX dictionary, using the Athena release v14.2.23. Two ver-
sions of the analysis are considered: one Is based on a compiled C++ event loop,
while the other one accesses the transcient tree with Python (via TPython).

o The test analysis runs over nearly 12500 events of a W — uv simulation (Athena
v14.2.20, /s = 10TeV), using Lustre. It calculates the W transverse mass 10k
times, and plots control histograms. Results are shown below.

o Comparable performances are obtained for both versions of the analysis in the
case where the calculation of the transverse mass Is not repeated.

12—

—e— ARA with Python

Speedup factor

—®— ARA with C++

Processing time [s]
3
T

600—

400

200 —e— ARA with Python

2 —8— ARA with C++
—— ®
o — o A
O | O |
0 10 20 30 40 0 10 20 30 40

Number of cores Number of cores

