

# The ALICE Offline Environment - Status and Perspectives

Federico Carminati
on behalf of the ALICE Core Offline Team
26/03/2009



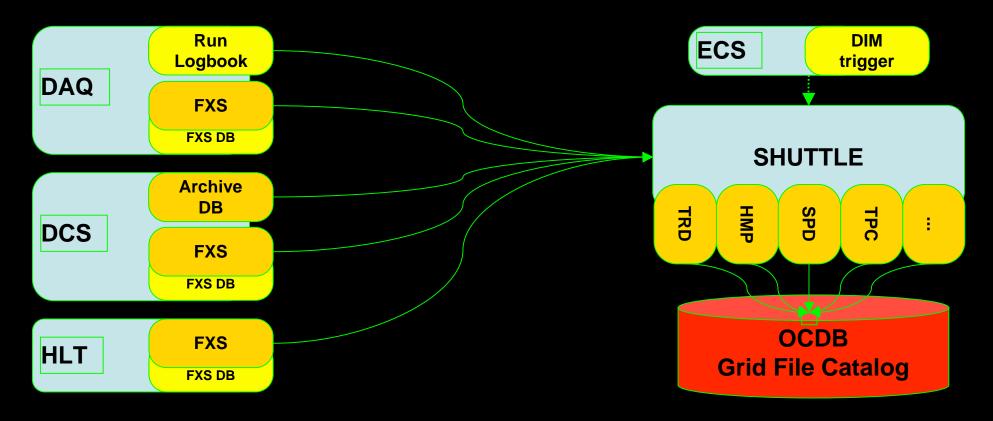


## Outline

- AliRoot
  - Simulation
  - Conditions data
  - Reconstruction
  - Visualization
  - Alignment
  - Analysis
- The computing model
  - Resources
  - Data taking scenario
- Summary






#### Simulation

- Geometry
  - Geometry "as built"
  - Extensive automatic internal consistency checks
  - Account of survey data and alignment
- Generators: possibility to include new ones in a transparent way
- Particle transport: possibility to use in production Geant3,
   Fluka and Geant4 thanks to the Virtual MC
- Digitization and raw data: detector specific, fully aware of the data taking conditions
- Ongoing improvements in the CPU and memory consumption
- In general: this is the most stable part of AliRoot





## Conditions data - Shuttle



No alternative system to extract data (especially online calibration results) between data-taking and first reconstruction pass!





#### Conditions data - Shuttle (1)

- Shuttle (subsystem DBs to Grid conditions data publisher) system is in operation since 2 years
  - In production regime for the whole 2008
- Detector algorithms (DAs) within Shuttle have evolved significantly, ready for standard data taking
- High stability of primary sources of conditions data:
   DCS, DAQ DBs and configuration servers
- Toward the end of last cosmics data taking period (August) – all pieces, including DAs fully operational





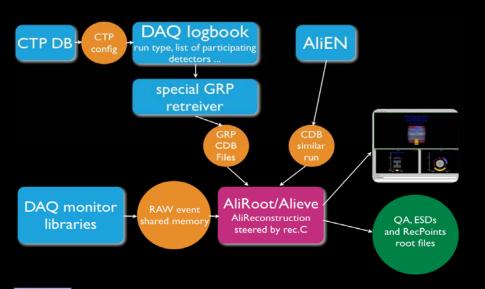
#### Conditions data - Shuttle (2)

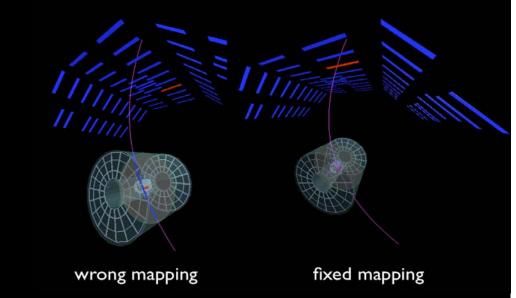
- Major efforts concentrated on adding more conditions data
  - –Critical LHC parameters
  - -New detector's and control hardware
- Conditions data access is the area with least problems on the Grid
  - Both in terms of publication and client access for processing and analysis

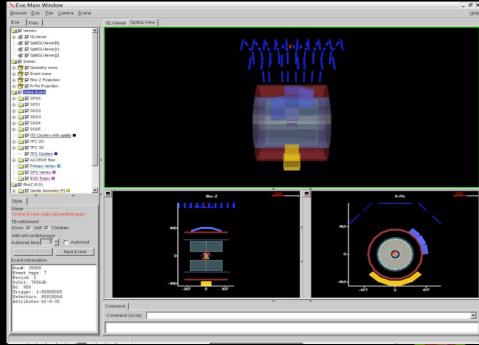




#### Reconstruction


- New developments to meet the requirements that came during the cosmic data taking
  - Prompt online reconstruction.
  - Parallel PROOF based offline reconstruction.
- Further improvements in the algorithms
- Optimization of the CPU and memory consumption.




# **Prompt**

- Recent development
- Very useful for high-level QA and debugging
- Integrated in the AliEVE event display
- Full Offline code sampling events directly from DAQ memory











## Parallel Reconstruction of Raw Data

- Needed for fast feedback from reconstruction
  - Understand ALICE detector and reconstruction software
  - Debug, tune and optimize reconstruction code
- Based on PROOF (TSelector)
  - Runs on Proof clusters (CAF, GSI AF)
- Transparent
  - User does not notice a difference w.r.t to running locally
- Minimal data flow between components:
  - Common (conditions and options) data accessed once from the client machine
  - Workers access raw-data events directly from AliEn (via xrootd)
- Minimal I/O on the workers
- Fully operational, provides ~30-fold speed-up in the processing rate on current CAF

#### Offline reconstruction

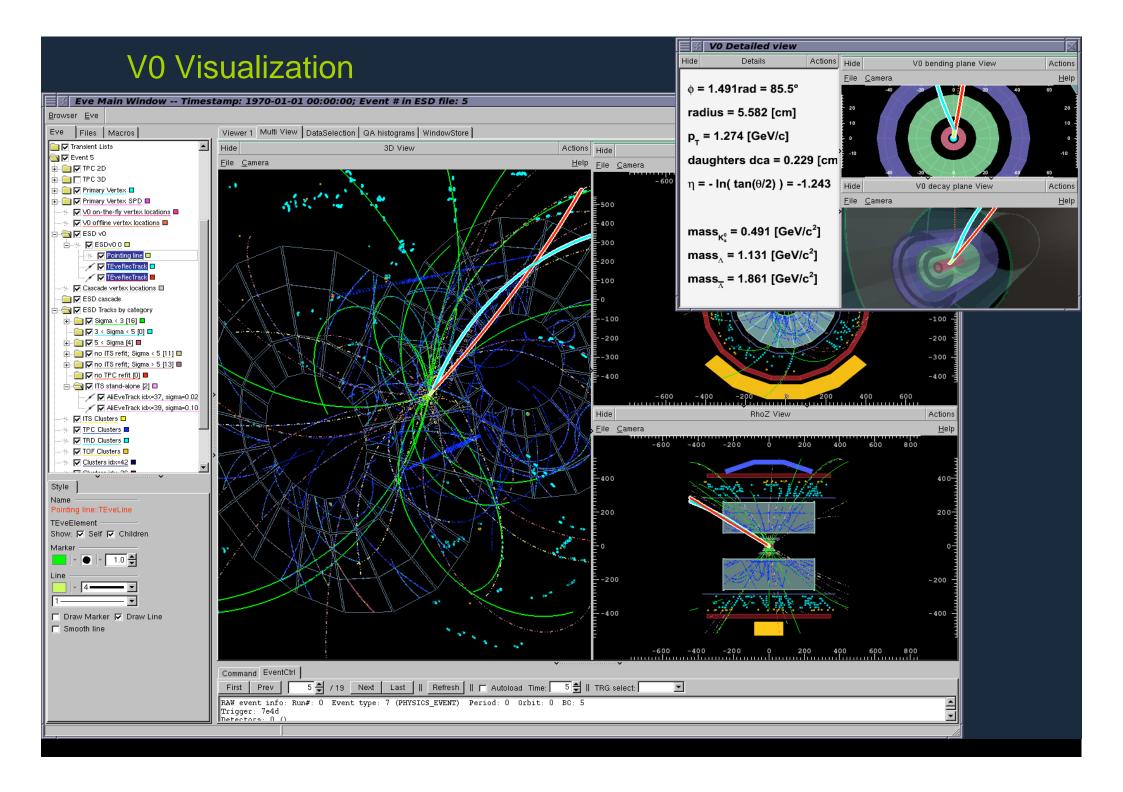
- Detector reconstruction parameters
  - Several beam/multiplicity/luminosity conditions
  - -Taken into account on event-by-event basis
- Quasi-online reconstruction status
  - -All runs from 2008 cosmics data processed
    - Emphasis on 'First physics' detectors
    - Selected runs already re-processed as 'Pass 2' and 'Pass 3'
- Re-processing of all cosmics data general 'Pass 2'
  - After completion of alignment and calibration studies by detectors





#### Offline reconstruction (2)

- Development of quasi-online processing framework
  - Further refinement of Online QA
  - Speed up the launch of reconstruction jobs to assure 'hot copy' of the RAW data
  - January 2009 detector code readiness review and new set of milestones adapted to the run plan
- The middleware and fabric are fully tested for 'pass 1' (T0) RAW data processing
  - To a lesser extent at T1s limited replication of RAW to save tapes

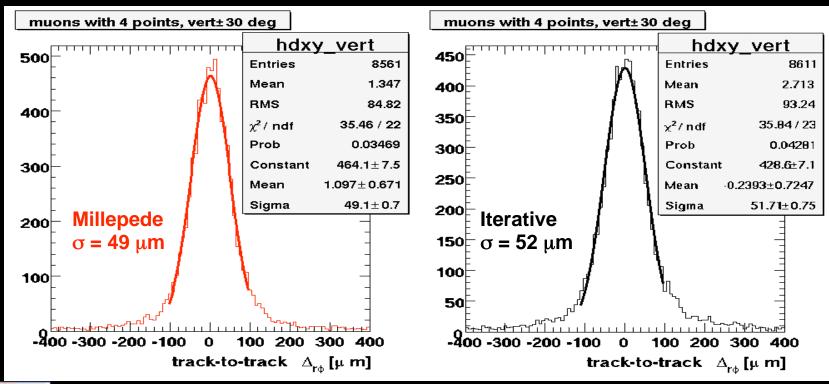





Eve – ALICE event-display Browser Eve File Camera -500 -300-200 -100 100 200 300 500 Eve Files Macros GLViewer | SplitGLView | DataSelection | QA histograms | Viewers 🛨 6 🔽 GLViewer 300 - SplitGLViewer[0] 200 200 - SplitGLViewer[2] Scenes 100 -🛨 🤭 🔽 Geometry scene 100 - 🌱 🔽 Event scene - 🤭 🔽 Rho-Z Projection 🛨 🁸 🔽 R-Phi Projection Event 136 W V0 offline vertex locations ■ V0 on-the-fly vertex locations ■ - ESD v0 ESD Tracks by category 🛨 🗀 🔽 5 < Sigma [4] 🖩 -100 in in its refit; Sigma < 5 [11] □ 🚊 🔄 🔽 no ITS refit; Sigma > 5 [1839] 🗉 ✓ ▼ TEveTrack idx=0, sigma=1000.000 ■ -200 -200 ▼ TEveTrack idx=1, sigma=1000.000 ■ ▼ ▼ TEveTrack idx=2, sigma=1000.000 ■ -300 -300 - 💉 🔽 TEveTrack idx=3, sigma=1000.000 🗉 ✓ ▼ TEveTrack idx=4, sigma=1000.000 ■ ▼ ▼ TEveTrack idx=6, sigma=1000.000 ■ 100 200 300 500 -500 -300-200 -100 ▼ TEveTrack idx=7, sigma=1000.000 ■ 💉 🔽 TEveTrack idx=8, sigma=1000.000 🗉 ▼ TEveTrack idx=9, sigma=1000.000 ■ ▼ ▼ TEveTrack idx=10, sigma=1000.000 ■ ✓ ▼ TEveTrack idx=11, sigma=1000.000 ■ -300 -200 200 300 500 Style Refs Name 300 300 no ITS refit; Sigma > 5 [1839]::TEveTrackList 200 200 -Show: ▼ Self ▼ Children 100 100 -☐ Draw Marker 🔽 Draw TEveLine 0.00 🛊 1.90 🕏 -100 -100 Command EventCtrl -200 -200 First Prev 136 4 /150 Next Last | Refresh | Autoload Time: 5 1 ITRG select: - -300 -300 No raw-data event info is available! ESD event info: Run#: 60824 Event type: 7 (PHYSICS EVENT) Period: 1 Orbit: 5b62d8 BC: 23c Active trigger classes: DOSCO 0.100 Trigger: 1 ( DOSCO ) Event# in file: 136 Timestamp: 2008-09-25 21:27:59, MagField: 1.00e-13 -300 -200 200 300 500 User clicked on: "V0 offline vertex locations [P]"

# Cosmic track in the MUON arm: 25/03/09

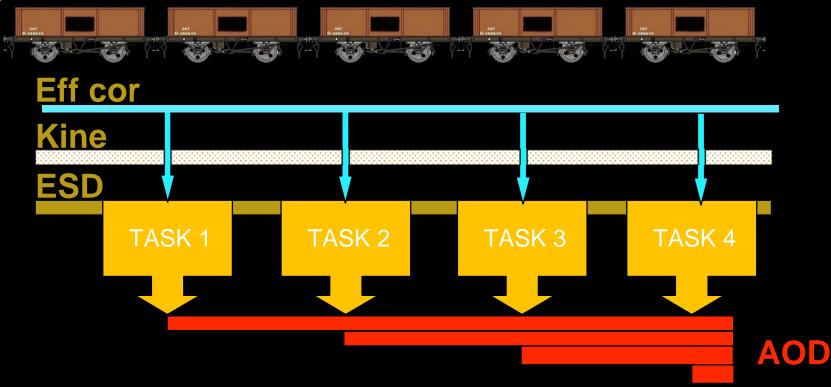





# Alignment

#### Two approaches:

- •Millepede/Millepede2
- •Iterative (Rieman fit)

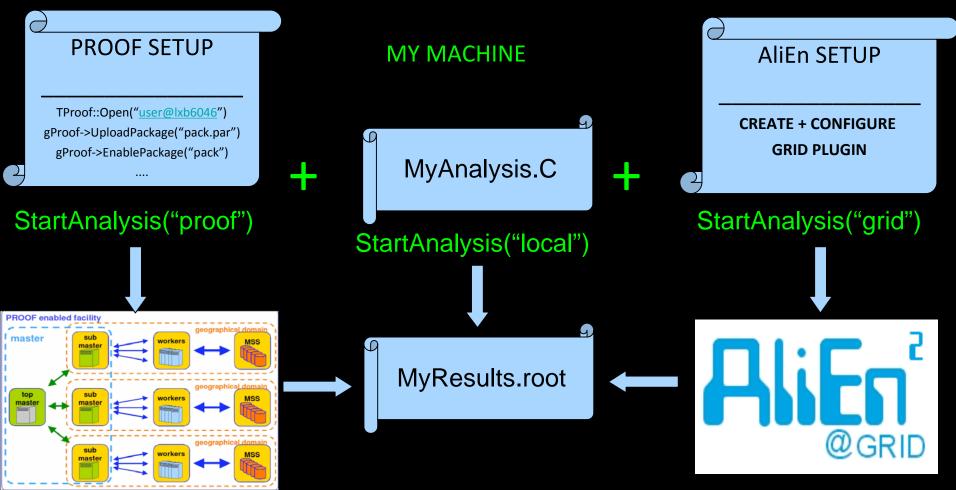

Millepede VS Iterative: track-to-track  $\Delta xy$  at y = 0 (SPD only)







# Analysis train




- AOD production will be organized in a 'train' of tasks
- To maximize efficiency of full dataset processing
- To optimize CPU/IO
- Using the analysis framework





# Analysis train: a transparent approach







# Analysis train: experience so far

- The framework was developed during the last 2 years and fully adopted by ALICE users
  - Mostly integration efforts, a lot of feedback from users
  - Framework became very stable in all modes
- Very good CAF experience, stability still suffers for GRID analysis jobs
  - 5-10 concurrent CAF users daily
- Simplified procedure to include existing analysis modules in a train and run it in AliEn
  - Self-configured cars (wagons) improve efficiency
  - Light analysis module libraries will be migrated much more frequent in GRID than our offline software





## Resource overview

Missing ~40% of financial resources

| Parameter | Now    | CTDR   | Ratio |
|-----------|--------|--------|-------|
| pp RAW    | 1.0MB  | 0.2MB  | 5*    |
| Pb RAW    | 35MB   | 13.8MB | 2.5   |
| ESD pp    | 0.04MB | 0.04MB | 1.0   |
| ESD Pb    | 6.3MB  | 3.0MB  | 2.1   |
| AOD pp    | 5kB    | 16kB   | 0.3   |
| AOD Pb    | 1.3MB  | 0.34MB | 3.8   |
| Reco pp   | 6.8s   | 6.5s   | 1.0   |
| Reco Pb   | 800s   | 810s   | 1.0   |

#### No Root compression yet

#### Outside CERN!

\* was 22!!

|      |           | 2     | 2008  | 2009     |         |              | 2010   |        | 2011   |        | 2012   |  |
|------|-----------|-------|-------|----------|---------|--------------|--------|--------|--------|--------|--------|--|
|      |           | T1    | T2    | T1       | T2      | T1           | T2     | T1     | T2     | T1     | T2     |  |
| CPU  | Requested | 7.2   | 4.6   | 11.2     | 17.4    | 23.56        | 25.11  | 31.41  | 33.48  | 41.88  | 44.63  |  |
|      | Missing   | -23%  | 84%   | -5%      | -26%    | -42%         | -28%   | -45%   | -30%   | -49%   | -38%   |  |
| Disk | Requested | 2,151 | 1,217 | 9,363.7  | 9,950.0 | 7,973        | 10,256 | 10,630 | 13,674 | 14,173 | 18,232 |  |
|      | Missing   | 11%   | 41%   | -58%     | -65%    | -15%         | -53%   | -9%    | -54%   | -17%   | -58%   |  |
|      | Requested | 2,431 |       | 11,704.9 |         | 20,788       |        | 29,932 |        | 39,076 |        |  |
|      | Missing   | 23%   |       | -44%     |         | <b>-52</b> % |        | -55%   |        | -54%   |        |  |





#### Resources

- There is a serious deficit in the Computing Resources pledged to ALICE
- We have considered alternative scenarios where we fit within the available resources / investments
- A reduction in the MC will have adverse effects
- A reduction in the number of reconstruction passes is very risky and may lead to reduced quality of physics





# Data taking scenario

- Cosmics
  - Resume data taking in July 2009, ~300TB of RAW
- p+p runs
  - Running at maximum DAQ bandwidth
    - Few days @ 0.9 GeV (October 2009)
    - 11 months @ 10 TeV
  - Machine parameters at P2 optimum data taking conditions for ALICE
  - Computing resources must be sufficient for quasi online processing
  - Address the ALICE genuine p+p physics program and provide baseline measurements for AA





# Data taking scenario (2)

- A+A run
  - -Fall 2010 a standard period of Pb+Pb running
  - -Computing resources must be sufficient to process these data within 4 months after data taking (as foreseen in the Computing Model)
  - Results to be presented at QM@Annecy (the LHC QM) in Spring 2011
- Monte Carlo
  - 2009-2010 are standard years for Monte Carlo production





# Summary

- Good progress in the development of the ALICE offline software
  - Mature simulation code
  - Stable, fully operational software for conditions data
  - Improved reconstruction, possibility for fast feedback
  - Powerful visualization based on EVE
  - Operational alignment
- Successful processing of the cosmic data in 2007-2008
- Computing model verified with cosmic and simulated data
- Possible shortage of resources in 2009-2010
- Ready for the first LHC collisions!





# Backup





# Computing resources

- Computing Resources (new requirements following the LHC scheduled announced after Chamonix)
  - 10 months of continuous pp running with an average data rate 3 times larger than the one in a standard year of data taking → 50% more data that impacts mainly storage but less CPU needs
  - 1 month of PbPb running equivalent to a standard year of data taking
  - Reduction of Monte Carlo for PbPb
  - The availability of resources, in particular for the PbPb data, remains a worrisome issue
  - No major new contributions anticipated

Table 2.: CPU requirements for 2009-2010 and comparison with previous requirements

|                          | TO new | CAF | T1   | T2   | то                       | CAF      | T1        | T2            | TO     | CAF  | T1    | T2     |
|--------------------------|--------|-----|------|------|--------------------------|----------|-----------|---------------|--------|------|-------|--------|
| new requirements (MSI2K) |        |     |      |      | old requirements (KSI2K) |          |           | variation (%) |        |      |       |        |
| 2009Q1                   | 7,9    | 2,6 | 8,0  | 8,1  |                          |          |           |               |        |      |       |        |
| 2009Q2                   | 7,9    | 2,6 | 8,0  | 8,1  | 9,1                      | 2,6 19,9 | 19,9 14,3 | 140           | -11 %  | 1 %  | -55 % | -37 %  |
| 2009Q3                   | 7,9    | 2,6 | 8,0  | 8,1  |                          |          |           | 14,3          | -11 70 |      |       | -37 %  |
| 2009Q4                   | 8,1    | 2,6 | 10,7 | 9,0  |                          |          |           |               |        |      |       |        |
| 2010Q1                   | 8,4    | 2,6 | 10,7 | 9,0  |                          |          |           |               |        |      |       |        |
| 2010Q2                   | 8,4    | 2,6 | 10,7 | 9,0  | 9,1                      | 2.6      | 23,6      | 25,1          | 0 %    | 0 %  | 9 %   | -19 %  |
| 2010Q3                   | 8,5    | 2,6 | 10,7 | 9,0  | 9,1                      | 9,1 2,6  | 2,0 23,0  | 23,6 25,1     | 0% 0%  | U 70 | 9 %   | -19 70 |
| 2010Q4                   | 9,1    | 2,6 | 25,6 | 20,2 |                          |          |           |               |        |      |       |        |

Table 4.: Custodial Storage (integrated) requirements for 2009-2010 and comparison with previous requirements

|        | CERN          | T1                    | CERN | T1         | Tape          | T1    |
|--------|---------------|-----------------------|------|------------|---------------|-------|
|        | new requireme | new requirements (PB) |      | nents (PB) | variation (%) |       |
| 2009Q1 | 3,3           | 2,4                   |      |            |               |       |
| 2009Q2 | 3,4           | 3,6                   | 7.7  | 10.6       | E0 0/         | -44 % |
| 2009Q3 | 3,6           | 4,7                   | 7,7  | 10,6       | -52 %         |       |
| 2009Q4 | 3,7           | 5,9                   |      |            |               |       |
| 2010Q1 | 4,1           | 7,0                   |      |            |               |       |
| 2010Q2 | 4,6           | 8,2                   | 0.4  | 10.7       | 10.0/         | 44.0/ |
| 2010Q3 | 5,0           | 9,3                   | 8,1  | 19,7       | -18 %         | -41 % |
| 2010Q4 | 6,7           | 11,6                  |      |            |               |       |

Table 3.: Disk requirements for 2009-2010 and comparison with previous requirements

|        | CERN      | T1                    | T2   | CERN | T1            | T2    | CERN  | T1    | T2    |
|--------|-----------|-----------------------|------|------|---------------|-------|-------|-------|-------|
|        | new requi | old requirements (PB) |      |      | variation (%) |       |       |       |       |
| 2009Q1 | 1,7       | 2,4                   | 1,7  |      |               |       |       |       |       |
| 2009Q2 | 1,9       | 3,0                   | 2,6  | 2,5  | 9,9 9,6       | -4 %  | -56 % | -54 % |       |
| 2009Q3 | 2,2       | 3,6                   | 3,5  | 2,5  |               | -4 70 |       | -54 % |       |
| 2009Q4 | 2,4       | 4,3                   | 4,4  |      |               |       |       |       |       |
| 2010Q1 | 2,6       | 4,9                   | 5,3  |      |               |       |       |       |       |
| 2010Q2 | 2,9       | 5,5                   | 6,2  | 4,2  | 9,9           | 10,3  | 8 %   | -0 %  | 21 %  |
| 2010Q3 | 3,1       | 6,1                   | 7,0  | 4,2  | 9,9           | 10,3  | 0 70  | -0 %  | 21 70 |
| 2010Q4 | 4,5       | 9,9                   | 12,4 |      |               |       |       |       |       |

Requirements vs pledges

|       | -                    |          |         |        |        |  |  |  |  |  |
|-------|----------------------|----------|---------|--------|--------|--|--|--|--|--|
|       |                      | 200      | 09      | 2010   |        |  |  |  |  |  |
|       |                      | T1       | T2      | T1     | T2     |  |  |  |  |  |
| 0011  | Requested            | 10,7     | 9,0     | 25,6   | 20,2   |  |  |  |  |  |
| CPU   | Missing              | -4%      | 43%     | -41%   | -0%    |  |  |  |  |  |
| Diele | Requested            | 4 263,54 | 4 380,9 | 9 869  | 12 365 |  |  |  |  |  |
| Disk  | Missing              | -9%      | -6%     |        |        |  |  |  |  |  |
| MSS   | Requested            | 5 887,01 |         | 11 648 |        |  |  |  |  |  |
|       | Requested<br>Missing | 5%       |         | -12%   |        |  |  |  |  |  |



26/03/09

fca @ CHEP09