Marc Deissenroth
Physikalisches Institut
Ruprecht Karls Universität Heidelberg
on behalf of the LHCb collaboration

LHCb Alignment Strategy

Abstract

The LHCb detector is designed to study B meson decays with very high precision. Such precision measurements can only be achieved with a well calibrated and aligned spectrometer. For that, a very accurate determination of the relative position of the subdetectors to each other (global alignment), as well as an internal alignment of components of the subdetectors (local alignment) is necessary. A global alignment can only be achieved with tracks traversing the whole detector, whereas the local alignment requires tracks in the concerning subdetector. Here we present results obtained with data of cosmic muons and beam stopped events (TED), allowing the internal alignment of various subdetectors. The Vertex Locator and the Inner Tracker are calibrated using TED data, the large Outer Tracker and the Muon Stations collected a significant amount of muons from cosmic showers.

Alignment Formalism

| Alignment of LHCb |
| :--- | :--- | :--- | :--- |
| is challenging: |\quad| $\boldsymbol{O (1 0 0 0)}$ parameters |
| :--- |
| to determine |\quad| $\boldsymbol{O}\left(\mathbf{1 0}^{3}\right)-\boldsymbol{O}\left(\mathbf{1 0}^{6}\right)$ tracks |
| :--- |
| for precise alignment | | Robust and fast |
| :--- |
| algorithms |
| required |

1. Robust track fit using χ^{2} minimization, written in matrix form with $\mathbf{L}(\mathrm{n} \times \mathrm{n})$

$$
\mathbf{L} \vec{a}=\vec{b} \quad \text { with } \vec{a} \text { : track parameters; } \vec{b} \text { :measurements }
$$

2. Assume v tracks: build $(N+v \cdot n)$-matrix with track and alignment parameter information

$$
\left(\begin{array}{c|ccc}
\sum \Gamma_{i} & \cdots & M_{i} & \cdots \\
\hline \vdots & \ddots & 0 & 0 \\
M_{i}^{T} & 0 & L_{i} & 0 \\
\vdots & 0 & 0 & \ddots
\end{array}\right)\left(\begin{array}{c}
\vec{\alpha} \\
\hline \vdots \\
\vec{a}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\frac{\sum \vec{\beta}_{i}}{\vdots} \\
\vdots \\
\vec{b}_{i} \\
\vdots
\end{array}\right) \quad \begin{aligned}
& \Gamma \text { alignment constants (size } \mathrm{N} \text {) } \\
& \vec{\beta}: \text { global measurements } \mathrm{N} \times \mathrm{N} \text { matrix }
\end{aligned}
$$

3. Reduce to ($\mathrm{N} \times \mathrm{N}$) - matrix and solve $\quad \Gamma^{\prime}=\Gamma-\sum_{i} M_{i} L_{i}^{-1} M_{i}^{T}$
for alignment constants
$\vec{\beta}^{\prime}=\vec{\beta}-\sum_{i} M_{i}\left(L_{i}^{-} \vec{b}_{i}\right)=\vec{\beta}-\sum_{i} M_{i}\left(\vec{a}_{i}\right)$
$\Gamma^{\prime} \vec{\alpha}=\vec{\beta}^{\prime}$

Different implementations used in LHCb

- Millipede [1] formalism for internal alignment of VELO, IT, OT

Implementation using tracks fitted with LHCb's standard track fit (Kalman filter [2]). Can be applied for local or global alignment*

Vertex Locator Alignment

The LHCb Vertex Locator (VELO) plays a crucial role in the high level trigger, the track and the vertex reconstruction. An accurate determination of primary and secondary vertices is mandatory to achieve an excellent lifetime resolution of the B mesons.
The presented results for the alignment of the LHCb Vertex Locator (VELO) are obtained using an algorihtm based on the Millepede [1] formalism.

The task of the alignment:

number of alignable objects : 84 total alignment parameters : 504

Data for alignment:
1400 tracks from TED data: muons produced by dumping protons on a beam stop - survey

Module positions for different data

The proton beam in the LHC was dumped two times in 2008 (August \& September) at a position beneficial for the VELO to take data. This data is used to determine the positione of the modules with the software alignment.

The track residuals in the \mathbf{R} and Φ sensors

901100
Pitch [$\mu \mathrm{m}$]
The resolution obtained from the TED data matches the binary resolution. the used clusters are one strip clusters. The 2006 Test Beam Resolution will be reached after optimization of the DAQ the time alignment for all sensors.

Alignment Process

The processing of an allignment run inside the LHCb software framework is shown on the right. First the global matrix is filled with information of all tracks and alignable detector components, second the matrix is inverted and the alignment constants are obtained. In case of nonlinear degrees of freedoms one has to evaluate the data again after a first iteration. This is due to the linearization of the system of equation which is necessary to solve the problem with the presented formalism

Outer Tracker Alignment

The Outer Tracker alignment is done twice with two independent algorithms. Thus a cross-check of the results and a comparison of the algorithms' performances is obtained.

 reasonable statistics. The detector was adjusted in the main measurement direction X and in the rotation around the Z axis.

The task of the alignment:

- area covered by detector
- number of alignable objects
- total alignment parameters - magnetic field

Track residuals and detector calibration

$$
\begin{aligned}
& : 27 m^{2} \\
& : 432 \\
& : 2592 \\
& : \text { yes }
\end{aligned}
$$

解 216 modules with
Data for alignment:
silicon modules
module with R and Φ sensors, pitch: $40-100 \mu \mathrm{~m}$ sensor thickness: $300 \mu \mathrm{~m}$.172k readout channels retractable detector halves (accuracy $10 \mu \mathrm{~m}$)

