Overview of the LHCb Tracking System and its Performance

Manuel Schiller

(Physikalisches Institut, Universität Heidelberg)

on behalf of the LHCb collaboration

Outline

- LHCb tracking system
- tracking algorithms
 - performance on simulated data
- results with data
 - beam induced events
 - cosmic muons
- summary

(CHEP 2009, March 24th 2009, Prague)

Lнср

Manuel Schiller, Physikalisches Institut der Universität Heidelberg

The LHCb Tracking System

Tracking Strategies

- Velo tracking
 - straight lines in 2D (rz-plane) first, then full 3D
- forward tracking
 - extend Velo track into T (Hough transform)
 - add TT hits
- standalone T station reco
 - recovers daughters of K_s decaying behind the Velo
- track matching
 - match Velo and T segments
 - add TT hits

redundant set of algorithms

Vertex

Magnet

RICH1

Tracking Performance in Simulation

- long tracks (Velo + T stations)
 - efficiency: 95.0 % (p > 5 GeV)
 - ghost fraction:

14.4 % (event averaged) 18.8 % (track averaged)

Tracking Performance in Simulation

• total reconstruction time in tracking detectors:

0.66 s/event total

0.01 s/event decoding0.10 s/event pattern recognition0.50 s/event track fitting

(run on AMD Opteron @ 2.2 GHz)

Performance in Simulation

Available Data

- "TED shots" (about 1400 tracks)
 - from injection tests
- beam splash events (6 events)
 - taken with beam 1 circulating on September 10th, 2008
- cosmic muons (1.2 M events)
 - low rate (LHCb geometry!)
 - always available

TED data

- TED data:
 - injection test with beam stopped about 300m away from LHCb

- first TED shots: Friday, 22 August 2008
- about 1400 Tracks

Velo resolution in TED data

- binary resolution achieved
- expect further improvement once Velo fully calibrated

Manuel Schiller, Physikalisches Institut der Universität Heidelberg

VELO Alignment results with TED 10 data

- split track sample in two (August/September)
 - about 700 tracks each

beam splash events in OT

- 6 events from "first beam day" in OT
 - number of hits/track and residuals as expected

Cosmics in OT

- reconstructed with standard algorithm
 - open cuts, don't use drift times (OT not yet calibrated)

OT Alignment with Cosmics

- Use 2 complementary approaches
 - χ^2 -minimization using residuals from Kalman fit
 - Millepede based
- both give compatible results
 - Mean residual per module

For details, see posters by

- Jan Amoraal: Alignment of the LHCb detector with Kalman fitted tracks
- Marc Deissenroth: Experience with LHCb alignment software on first data

Mean residual per module

Manuel Schiller, Physikalisches Institut der Universität Heidelberg

400

Module

Summary

- tracking performance in simulated events:
 - 95.0 % efficiency, dp/p about 4.5‰
- reconstruction algorithms have successfully been tested on
 - TED data
 - cosmics
 - Monte Carlo
- first alignment possible
 - already good resolution achieved, but still limited by statistics

