
SMI++
Object Oriented Framework used for Automation and Error Recovery

in the LHC Experiments

B. Franek – Rutherford Appleton Laboratory, UK C. Gaspar – CERN, Geneva, Switzerland

SMI

B. Franek, poster presented at Computing in High Energy and Nuclear Physics, Praha – Czech Republic, 21 – 27 March 2009

This framework provides:

-A method for decomposing a complex system

into smaller manageable entities where each

entity is modelled as a Finite State Machine .

The control system is constructed as a

hierarchical collection of intelligent and

autonomous FSMs operating concurrently.

-A formal language for describing each entity

and it’s behaviour. This allows the sequencing

and synchronization of operations, rule-based

automation and error-recovery.

-Tools for the deployment of the complete system

across heterogeneous distributed platforms.

Introduction

To implement the abstraction is the task of

Proxy process

Proxy is a piece of software forming a bridge

between the concrete entity and

the associated object in the SMI++ world.

SMI++

control world
Associated object

Proxy

Concrete entity Real world

C, C++, Fortran

Proxy monitors the concrete entity and makes it

look like a simple object existing in discrete states

It also translates and delivers commands sent

from SMI++ world to the concrete entity.

Basic Concepts
Objects

The real world to be controlled is a collection

of concrete entities

E.g. HV Power supply, gas system,

radiation monitor, a software task etc

The abstraction of each concrete entity is

associated object

They exist in discrete states e.g. ‘ON’

In each state they accept commands that invoke

actions which can bring about a change of state

e.g. ‘POWER-OFF’

In analogy, the control system to be designed is

conceived as a set of abstract objects.

An abstract object is an abstraction representing an
identifiable logical entity with well defined role in the

control system.

E.g.
Overall HV control

Associated objects representing the individual power supplies

Abstract objects exist in the SMI++ world in

discrete states

in each state they can respond to commands by

executing so called actions

An action consists of a sequence of instructions.

Objects can execute their actions concurrently

with other objects

During execution of an action:

• object can send commands to other objects

• it can interrogate states of other objects

• it can respond asynchronously to state changes of

other objects
The task of designing the control system is

equivalent to that of giving a good description of the

real world in terms of domains of objects being

controlled and the procedures (embedded in

abstract objects) that operate on them

Basic Concepts
Domains

To reduce complexity of large systems, objects

are organized in modules calledDomains

Domain is named group of logically related objects

Only few objects in each domain are made visible to

the rest of the control system

(modularity & information hiding)

Domain is also the atomic processing unit of

control software

Domain becomes Process

E.g.

Control

HV system Gas system

Control

Advantages :

-Encourages

modularity and information hiding

- individual domains can be simple enough so

that they can be easily understood

- Domains can be designed, revised and tested

independently (even by different teams)

- it is possible to change the design of a domain

without affecting the rest of the control system

- encourages hierarchical structure

- facilitates distribution of the control software.

Different domains can run on different machines

State Manager Language

SML

Formal language for description of objects, their states

and their actions (sequence of instructions)

Idea of a domain File containing SML code

State : READY_FOR_
RUN

when (OPER in_state
 REA

Action : START_NEW
_RU

do CONF_RO OPER

if (OPER not_in_state
 RE

do OPER ERROR

terminate_action / sta
te

endif

do GE

SML file is a full description of the domain

SML file

Associated objects. SML code is just a declaration

of states and actions

Object : HV /associated

State : OFF

action : SWITCH-ON

State : ON

action : SWITCH-OFF

State : NOT-THERE / dead_state

E.g.

Abstract objects

In addition to the state and action declarations, for

every action there is a sequence of instructions that

has to be executed in the course of that action. The

language allows object :

- to send commands to other objects

do instruction

do SWITCH-ON HV-A

do SWITCH-ON HV-B

e.g.

will send command SWITCH-ON to

object HV-A and HV-B

-to interrogate states of other objects

if instruction

if (HV-A in_state OFF) then

do SWITCH-ON HV-A

endif

- to respond asynchronously to state changes of

other objects

when clause

Object : ALARM

state : READY

when ((HV-A not_in_state ON)

or (HV-B not_in_state ON)

) do RISE-ALARM

e.g.

- etc

e.g.

Conclusion

SMI++ Framework provides :

Special language (SML) to describe the real world to

be controlled and to ‘code’ the control logic

Set of tools to implement, test and to use the designed

control system

It encourages use of OO concepts such as

abstraction, encapsulation, modularity,hierarchy

In the past, it has been successfully used by DELPHI

experiment at CERN in Geneva and by BaBar
experiment at SLAC in Menlo Park for the design and

implementation of their Run Control.

Currently, all four LHC experiments at CERN

decided to use it either fully or partially for their

experiment control. The complexity of the designed

systems runs into thousands of State Managers

State Manager process

SM

1 / SMI++ domain

The key tool of SMI++ framework.

It is a logic Engine that reads the SML file

and ‘drives’ the model described in the file

State : READY_FOR_
RUN

when (OPER in_state
 REA

Action : START_NEW
_RU

do CONF_RO OPER

if (OPER not_in_state
 RE

do OPER ERROR

terminate_action / sta
te

endif

do GE

Initial input

- responds to external commands

- responds to asynchronous changes in

its environment

- sends out ‘properly’ sequenced commands to

other domains and proxy processes

Designed using OOD tool Rational Rose/C++

and coded in C++

SML file State Manager

All four LHC experiments at CERN

(ATLAS, ALICE, CMS and LHCb) have
adopted SMI++ framework integrated with

SCADA (PVSSII) system

Use of SMI++ in LHC

External commands

Concrete

entities

Proxies

The commands come either

from GUI or another

domain

The commands come either

from GUI or another

domain

Real

world

Control

world

Single domain

Associated

objects

Abstract

objects

Hardware components and software tasksHardware components and software tasks

Commands from GUI

Control system is designed as

Hierarchy of Domains

Associated objects

either to a proxy or an

object in another

domain

Associated objects

either to a proxy or an

object in another

domain

PVSS00smi

CtrlCtrl

APIAPIEVtEVt

DD DDDD

UIMUIM UIMUIM UIMUIM

DMDMDBDB

fwFsmSrvr

PVSS II SMI++

INFR. DCS DAQTFC LHC

ECS

SubDetN

DCS

SubDetN

DAQ

SubDet2

DCS

SubDet2

DAQ

SubDet1

DCS

SubDet1

DAQ

SubDet1

LV

SubDet1

TEMP

SubDet1

FEE

SubDet1

TELL1

LV

Dev1

LV

Dev2

LV

DevN

SubDet1

GAS

FEE

Dev1

FEE

Dev2

FEE

DevN

Control

Unit

Device

Unit

… …

……

Legend:

C
o
m
m
a
n
d
s

S
ta
tu
s
 &
 A
la
rm
s

HLTINFR. DCS DAQTFC LHC

ECSECS

SubDetN

DCS

SubDetN

DAQ

SubDet2

DCS

SubDet2

DAQ

SubDet1

DCS

SubDet1

DAQ

SubDet1

LV

SubDet1

TEMP

SubDet1

FEE

SubDet1

TELL1

LV

Dev1

LV

Dev2

LV

DevN

SubDet1

GAS

FEE

Dev1

FEE

Dev2

FEE

DevN

Control

Unit

Device

Unit

… …

……

Legend:

C
o
m
m
a
n
d
s

S
ta
tu
s
 &
 A
la
rm
s

HLT

Control hierarchy of the experiment

Example - LHCb

Run Control User Interface

Recently, SML was upgraded with advanced

features such as Object Sets

- Group of similar objects can be assigned to

named Object Set :

e.g..

- Objects can be dynamically inserted or

removed from a Set:

e.g.

- it is possible to send commands to all the objects

of a given Set with one do instruction

e.g.

- it is also possible to have constructs such as

if (all_in HV_SUPPLIES in_state ON)

move_to READY

or

when (any_in HV_SUPPLIES not_in_state ON)

do RISE-ALARM

do SWITCH-ON all_in HV_SUPPLIES

insert HV-2345 in HV_SUPPLIES

or

remove HV_M from HV_SUPPLIES

ObjectSet : HV_SUPPLIES {HV-A, …. , HV-Z}

