

CORAL Server

A middle tier for accessing relational database servers from CORAL applications

<u>A. Valassi</u>, A. Kalkhof, D. Duellmann, Z. Molnar (CERN IT-DM) M. Wache (University of Mainz / Atlas) A. Salnikov, R. Bartoldus (SLAC / Atlas)

CHEP2009 (Prague), 23rd March 2009

CERN - IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it

Outline

Motivation

Development status

- Software architecture design

Conclusions

CERN - IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it**

CORAL Server – 2

CERN

Department

Introduction

mm

now loop w

CERN - IT Department CH-1211 Genève 23 Switzerland

CORAL used to access main physics databases

- Both directly and via COOL/POOL
 - Previous talk about LCG Persistency Framework (A.V.)
 - Important example: conditions data of Atlas, LHCb, CMS
- Oracle is the main deployment technology at T0 and T1
 - Previous talk about distributed database operation (M. Girone)

No middle tier in current client connection model

Simple client/server architecture

Limitations of present deployment model

- Security, performance, software distribution (see next slide)
- Several issues may be addressed by adding a middle tier

www.cern.ch/it A. Valassi – CHEP 2009, 23 March 2009

Motivation

now loop

CERN - IT Department CH-1211 Genève 23

www.cern.ch/it

Switzerland

- Secure database access
 - Authentication via Grid certificates
 - No support of database vendor for X.509 proxy certificates
 - Hide database ports within the firewall (reduce vulnerabilities)
 - Authorization via VOMS groups in Grid certificates

• Efficient and scalable use of server resources

- Multiplex client connections using fewer connections to DB
- Option to use additional caching tier (CORAL server proxy)
 - Also useful for further multiplexing and for client monitoring

Client software deployment

- CoralAccess client plugin using custom network protocol
 - No need for Oracle/MySQL/SQLite client installation

Interest from several stakeholders

- Service managers: physics DB team, security team...
- LHC users: Atlas HLT (replace MySQL-based DbProxy)..

A. Valassi – CHEP 2009, 23 March 2009

CORAL Server –

CÉRN

Deployment scenario (e.g. COOL)

CERN

Development overview

First phase of development in 2007-2008

- User requirements (Atlas HLT) analyzed in Nov-Dec 2007
- Main emphasis of development on server components
 - Design based on template meta-programming techniques
- Success in COOL R/O tests, problems in Atlas HLT tests

New developments in 2009 ← Main focus of this talk

- Several changes in the team in December 2008
 - Software review to identify areas for improvement
 - Development restarted in Jan 2009 using a new comprehensive architecture design for server and client
- Keep current focus on R/O access with proxy for Atlas HLT
 - This is only the first customer but is an excellent benchmark
- Promising outlook after only two months
 - Success in multi-client HLT tests against COOL Oracle DB

www.cern.ch/it A. Valassi – CHEP 2009, 23 March 2009

now loon

CERN - IT Department CH-1211 Genève 23

Switzerland

Guidelines for the new design

- Joint design of server and client components
 - Split system into packages 'horizontally' (each package includes a pair of one server and one client components)
 - RPC architecture based on Dec2007 python/C++ prototype

• Allow several people to work in parallel

- Minimize software dependencies and couplings
- Upgrades in one package should not impact the others

Include standalone package tests in the design

Aim to intercept issues before they show up in system tests

Decouple components using abstract interface

- Modular architecture based on object-oriented design
- Thin base package with common abstract interfaces
- Encapsulate implementation details of concrete packages

CH-1211 Genève 23 Switzerland www.cern.ch/it

ow loon

CERN - IT Department

A. Valassi – CHEP 2009, 23 March 2009

A few implementation details

Multi-threaded server

- Threads are managed by the SocketServer component
- One listener thread (to accept new client connections)
- One socket thread per client connection
 - Pool of handler threads (many per client connection if needed)

Network protocol agreed with proxy developers

- Most application-level content is opaque to the proxy
 - Proxy understands transport-level metadata and a few special application-level messages (connect, start transaction...)
 - Most requests are flagged as cacheable: only hit the DB once
- Server may identify (via a packet flag) client connections from a proxy and establishes a special 'stateless' mode
 - Single R/O transaction spans the whole session
 - 'Push all rows' model for queries (no open cursors)

now loop w

CERN - IT Department CH-1211 Genève 23

Switzerland

Incremental tests of applications

Add package 3 "server" (full chain)

A. Valassi – CHEP 2009, 23 March 2009

Current development status

Focus on R/O access with proxy for Atlas HLT

- Tests with Atlas HLT COOL db (OK)
- Tests with Atlas HLT geometry db (ongoing)
- Tests with Atlas HLT trigger db (in preparation)
- Atlas HLT data validation (not started yet)
- Atlas HLT performance validation (ongoing)

Observed hangs with Oracle connection sharing

- Libraries are not thread-safe (CORAL, Oracle client)?
- Connection sharing may be disabled in Atlas HLT
 - But it is essential for connection multiplexing without a proxy

Progress on secure authentication/authorization

- OpenSSL with VOMS handling of proxy certificates

www.cern.ch/it A. Valassi – CHEP 2009, 23 March 2009

mm

low loop

CERN - IT Department CH-1211 Genève 23

Switzerland

CH-1211 Genève 23 Switzerland

www.cern.ch/it

Outlook

- First release (R/O, no certificates) in Q2 2009
 - After we have fulfilled the Atlas HLT requirements

Support for proxy certificates in Q2/Q3 2009

- Secure authentication and authorization

• Full R/W functionalities in Q3 2009

- DML (e.g. insert table rows) and DDL (e.g. create tables)

Deployment of test servers at CERN by Q4 2009

- In parallel, discuss deployment at T1 sites

A. Valassi – CHEP 2009, 23 March 2009

Reserve slides

on a b

methu

now loop wa

CERN - IT Department CH-1211 Genève 23 Switzerland WWW.cern.ch/it

A. Valassi – CHEP 2009, 23 March 2009

Atlas HLT and DbProxy

DbProxy in a Nutshell

- Original Scope: ATLAS High Level Trigger (HLT) Configuration
 - Must configure entire farm of L2+EF processors within O(1-10) s
 - O(2000) HLT nodes \times 8 cores/node \times 1 client/core; O(10-100) MB of configuration data/client \rightarrow O(0.1-1) TB of data being read
 - Must reduce number of connections (→ multiplexing) and network traffic (→ caching)
- Characteristics

on a S

turn:

now loop wa

CERN - IT Department

CH-1211 Genève 23

www.cern.ch/it

Switzerland

niet huse

- Process that sits between HLT client and database; acts as a server downstream and as a client upstream
- Transparent to the HLT client that connects to it
- Can itself connect to another proxy; *i.e.*, allows one to build hierarchies (tree of proxies)

Rainer Bartoldus DbProxy Status, Online Database Meeting, Apr 21, 2008

CERN

A. Valassi – CHEP 2009, 23 March 2009

Architecture (client/server)

A. Valassi – CHEP 2009, 23 March 2009