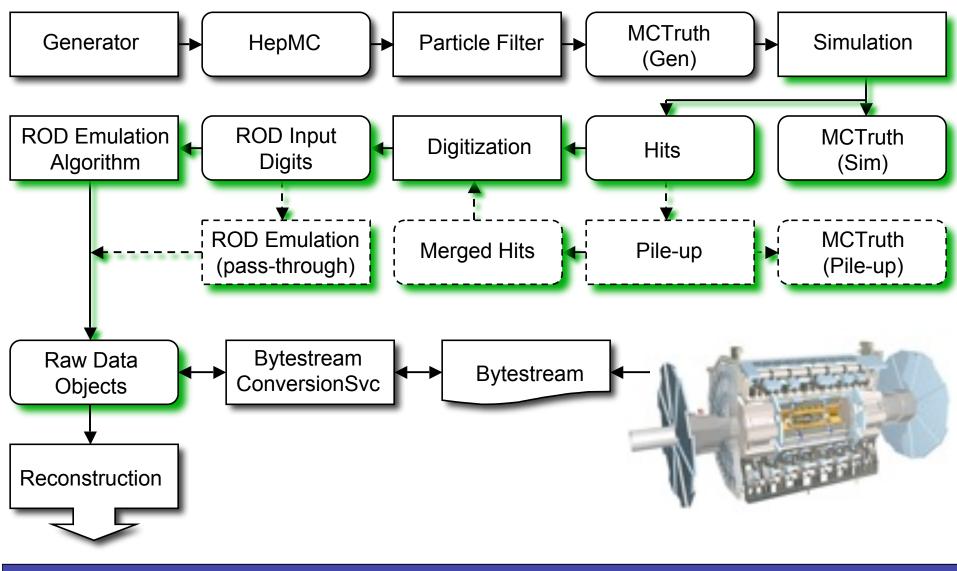

ATLAS Simulation Validation and Computing Performance Studies



Simulation Overview

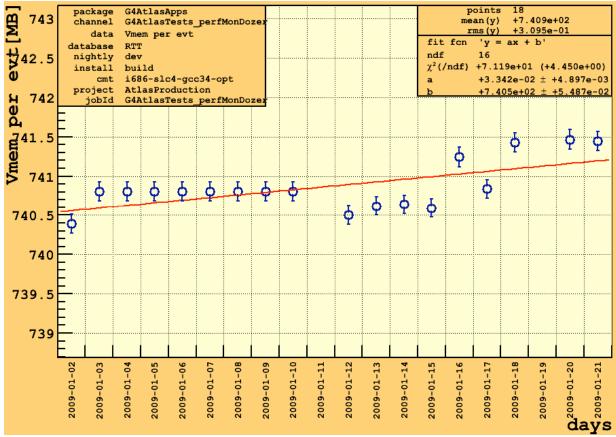
23 March 2009

Z Marshall - CHEP 2009

Monte Carlo Overview

- ➔ Each Monte Carlo job is divided into three parts
- ➔ Generation: Pythia, Herwig, etc produce a single pp scatter event, with rapid hadronization and decay
 - Won't be covered in this talk
- ➔ Simulation: all particles from the generater are run through a full detector simulation
 - "Hits," energy depositions (with position and time) are kept
- Digitization: all hits from the simulation are run through electronics simulation
 - Digitization output can be translated to look identical to what comes off the detector
 - At this stage, we overlay pile-up: additional minimum bias, beam gas, beam halo, and cavern background events
- Reconstruction and trigger run in the same way for both Monte Carlo and real data

ATLAS Simulation Basics


- ➔ Simulation based on the Geant4 toolkit
 - Recently transitioned from 8.3.patch02 to 9.1.patch03
 - Now testing 9.2 (candidate for first data)
 - Using CLHEP 1.9.4.2
- ➔ Default configuration is 32-bit libraries built with gcc3.4.6 on SLC4
 - Also supporting SLC5, gcc4.3, 64-bit libraries, several LCG versions, attempting a port for Mac OS X…
- ➔ Production is run on the Large Computing Grid
 - >500 M events run last year
- ➔ Fresh releases built every ~month
 - Patches for production every ~week, or as needed

Automatic Testing

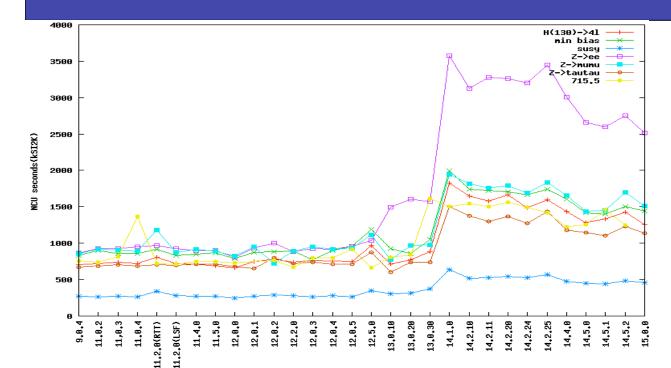
- ➔ No human can keep up with all those builds
- → Nightly, we run three types of tests
- → ATLAS Nightly (Build) Tests (~10)
 - Run for *every* build
 - Very basic (does it run), very short (<10 min)
- ➔ Run Time Tests (~50)
 - Run for select (~10) builds
 - Longer tests (hours), more complete
- → Full Chain Tests (~5)
 - Run for builds prior to release (~5)
 - Full day for a single test
 - Output of each day used as input for the next day
- → ALL of these required to pass prior to release...
- More on testing infrastructure in other talks

Nightly Testing

- Automatic testing also provides comparisons from day to day, including notification on failures
 - Invaluable for those with bad memories (like me)

20 day history of memory use for simulation

1 MB change well within the resolution from day to day


23 March 2009

Z Marshall - CHEP 2009

Simulation Benchmarking

- → Run a "representative" sample of events, to:
 - Check for problems throughout the detector
 - Check performance for most physics groups
 - Provide some rapid handle on any problems
- ➔ Single particles and full events
 - e^{+/-} 5, 50, 100 GeV of p_T
 - $-~~\mu^{\text{+/-}}$ 5, 50, 200 GeV of p_{T}
 - $\pi^{+/-}$ 5, 50, 200 GeV of p_T
 - Z> e⁺e⁻, μ⁺μ⁻, τ⁺τ⁻
 - Minimum bias
 - H(130)>ZZ>4I
 - SU3 SUSY
 - Jets with leading parton p_T between 35 and 70 GeV
- → 3000 events, 300 hours of computing time

Simulation CPU Performance

Times benchmarked by release. Recent jump from changing physics descriptions.

Sample	Generation	Simulation	Digitization	
Minimum Bias	0.0267	551.	19.6	
tī Production	0.226	1990	29.1	
Jets	0.0457	2640	29.2	
Photon and jets	0.0431	2850	25.3	
$W^{\pm} ightarrow e^{\pm} u_e$	0.0788	1150	23.5	
$W^\pm ightarrow \mu^\pm u_\mu$	0.0768	1030	23.1	
Heavy ion	2.08	56,000	267	
23 March 2009)	Z Marsl	hall - CHEP 2009	

Times per event in kSI2K sec (divide by 3 for a modern CPU)

Full events take ~10 minutes each

Simulation Optimizations

- ➔ New platform (slc5/gcc4.3) gives 20% improvement in CPU performance
 - Expected to become the default platform before first data
- Migration to Geant4 9.2 gives 10% improvement in CPU performance
 - First attempt scheduled for this month
- ➔ Some code profiling is underway
 - Removing some hot spots (string comparisons)
 - Easing others (MANY B-Field value queries)
- ➔ Generally, philosophy is to have as accurate as possible a full simulation
 - Means sacrifice of some computing resources
 - But fast simulations can be used for higher statistics
 - Makes simulation-based detector studies more "realistic"

Fast Simulations

- ➔ Several flavors of fast simulation exist for ATLAS
 - Shower libraries for low energy EM particles ("Fast G4")
 - Parameterization of the calorimeter ("ATLFAST-II")
 - Tracking using a simplified geometry ("ATLFAST-IIF")
 - Parameterization of final physics objects ("ATLFAST-I")
- Different use-cases require different granularity
 - Final simulation strategy makes best use of all flavors of fast simulation within the limits of grid resources

Sample	Full Sim	Fast G4 Sim	ATLFAST-II	ATLFAST-IIF	ATLFAST-I
Minimum Bias	551.	246.	31.2	2.13	0.029
tī	1990	757.	101.	7.41	0.097
Jets	2640	832.	93.6	7.68	0.084
Photon and jets	2850	639.	71.4	5.67	0.063
$W^{\pm} ightarrow e^{\pm} u_e$	1150	447.	57.0	4.09	0.050
$W^\pm ightarrow \mu^\pm u_\mu$	1030	438.	55.1	4.13	0.047
Heavy ion	56,000	21,700	3050	203	5.56

Memory Performance

- ➔ Memory is not really an issue for the simulation
 - We use ~850 MB of memory (grid nodes allow 2.4 GB)
 - Memory consumption is quite stable: leaks below 0.25
 MB/ev (remainder may be a "feature")
 - Very small dependence on geometry, physics descriptions, channel
- Digitization is more of a concern, particularly with high luminosity pileup
 - Able to run 10³⁴ locally without problems, but still issues when running on the grid

Resource	No Pile-Up	$10^{33} \text{ cm}^{-2} \text{ s}^{-1}$	$3.5\times 10^{33}\ cm^{-2}\ s^{-1}$	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
Memory Leak [kB/event]	10	270	800	2100
Virtual Memory [MB]	770	1000	1300	3600
Malloc [MB/event]	12	21	40	985

Output File Sizes

- → This is the major limiter for grid production
 - We stopped saving most digi output files to save space
 - Tracker is by far the largest consumer
 - Calorimetry does collection on-the-fly

Collection Name	Size [kb/event]	Percentage of File	
Silicon pixel tracker	82	4%	
Silicon strip tracker	356	16%	Recently reduced
Transition radiation tracker	921	46%	by ~70% (but not
Electromagnetic Barrel Calorimeter	89	4%	validated yet)
Electromagnetic Endcap Calorimeter	104	5%	·
Hadronic Barrel Calorimeter	29	1%	
Hadronic Endcap Calorimeter	22	1%	
Forward Calorimeter	42	2%	
Calorimeter calibration hits	243	12%	Optional
Muon system (all collections)	3	<1%	Auguarda for EO H
Truth (all collections)	134	7%	Average for 50 tt events
Total	1987	100%	(Varies by channel)
23 March 2009	Z Marshall - CHE	P 2009	12

Geometry and Validation

- ➔ Aim for a very realistic a detector description
 - Rechecking this year with engineering drawings
 - Approx. some dead material (wires) as distributed lumps
- ➔ Work toward real detector conditions
 - As installed positions for all detectors
 - Not just the right number of dead channels, but the right dead channels
 - Infrastructure available to recreate conditions for a specific data taking run
- → Good practice from cosmic data taking in 2008!
 - One dead power supply in the calorimetry
 - Several disabled cooling loops in the tracker
- Validate by weighing the real and simulated detectors
 - Aiming to be within a few tons (<1%)...

Robustness

- → Grid production is the ultimate test
 - About 250M events produced since August with full simulation, about 300M events with fast simulations
 - Available CPU allows order 1M Geant4 events per day
 - Of course more with fast simulation...
 - Still, the limit on production is *disk space* available!!
- ➔ No crashes in simulation reported since October!
 - Includes the transition to G4 9.1 we have not had a bug reported in production with 9.1 yet!
- ➔ No crashes in low pile-up digitization either
 - Still pushing luminosity limit, and memory consumption is an issue

Physics Validation

- ➔ Once our software runs, we have to check the physics content of the output!
- ➔ Dedicated group compares release-to-release
 - Representatives from all detectors and physics groups
 - About 1M events in different channels are used
 - This group provides tests of *computing* motivated simulation modifications (e.g. changing cuts)
- → Other groups compare to test beam
 - And to data, once we have it
 - Limited (interest in) comparisons to cosmics thus far
 - These groups provide most of our physics motivation for simulation modifications (e.g. changing physics models)

Physics Validation (II)

- Once we have good data available, quickly move to testing and tuning of the simulation
- ➔ Long check list of things to test
 - Geometry description (esp. thickness of the tracker)
 - Shower shapes for EM and hadronic calorimeters
 - Cavern background and noise (can be taken from data and overlaid on simulated signal events)
- Now we can work to understand what knobs are available to modify detector response
 - And how moving those knobs affects physical observables
 - Same story for fast simulations some can be tuned directly from data, others need a tuned full simulation before they are able to "tune to data"

Summary and Conclusions

- ATLAS has developed a robust simulation based on the Geant4 toolkit
 - Over 500M events were produced in the last year
 - No failures have been observed in the last six months
- Benchmarking and validation is done at several stages before and after each release
 - Nightly tests ensure software functionality
 - Large scale tests expose rare problems with new options and parameters
 - CPU, memory, and disk space consumption are constantly monitored
- ➔ The ATLAS simulation software is ready to face the challenges of data!