

The LHCb Run Control

An Integrated and Homogeneous Control System

LHCP The Experiment Control System

Is in charge of the Control and Monitoring of all parts of the experiment

Clara Gaspar, March 2009

LHCP Some Requirements

- Large number of devices/IO channels
 - Need for Distributed Hierarchical Control
 - De-composition in Systems, sub-systems, ... , Devices
 - Local decision capabilities in sub-systems
- Large number of independent teams and very different operation modes
 - Need for Partitioning Capabilities (concurrent usage)
- High Complexity & Non-expert Operators
 - Need for Full Automation of:
 - Standard Procedures
 - I Error Recovery Procedures
 - And for Intuitive User Interfaces

In order to achieve an integrated System:

Promoted HW Standardization

(so that common components could be re-used)

- I Ex.: Mainly two control interfaces to all LHCb electronics
 - I Credit Card sized PCs (CCPC) for non-radiation zones
 - A serial protocol (SPECS) for electronics in radiation areas
- Defined an Architecture
 - I That could fit all areas and all aspects of the monitoring and control of the full experiment
- Provided a Framework
 - I An integrated collection of guidelines, tools and components that allowed the development of each sub-system coherently in view of its integration in the complete system

Hep Generic SW Architecture

Hick The Control Framework

The JCOP* Framework is based on:

SCADA System - PVSSII for:

- I Device Description (Run-time Database)
- I Device Access (OPC, Profibus, drivers)
- I Alarm Handling (Generation, Filtering, Masking, etc)
- I Archiving, Logging, Scripting, Trending
- I User Interface Builder
- Alarm Display, Access Control, etc.

SMI++ providing:

Device Units

Control Units

- I Abstract behavior modeling (Finite State Machines)
- Automation & Error Recovery (Rule based system)

* - The Joint COntrols Project (between the 4 LHC exp. and the CERN Control Group)

Hep Device Units Unit

Provide access to "real" devices:

- The Framework provides (among others):
 - I "Plug and play" modules for commonly used equipment. For example:
 - I CAEN or Wiener power supplies (via OPC)
 - I LHCb CCPC and SPECS based electronics (via DIM)
 - I A protocol (DIM) for interfacing "home made" devices. For example:
 - I Hardware devices like a calibration source
 - I Software devices like the Trigger processes (based on LHCb's offline framework - GAUDI)
 - I Each device is modeled as a Finite State Machine

Hierarchical control

Each Control Unit:

- Is defined as one or more Finite State Machines
- Can implement rules based on its children's states
- In general it is able to:
 - I Summarize information (for the above levels)
 - I "Expand" actions (to the lower levels)
 - I Implement specific behaviour
 - & Take local decisions
 - Sequence & Automate operations
 - Recover errors
 - I Include/Exclude children (i.e. partitioning)
 - I Excluded nodes can run is stand-alone
 - I User Interfacing
 - I Present information and receive commands

Hep Control Unit Run-Time

Dynamically generated operation panels (Uniform look and feel) Configural

 Configurable User Panels and Logos
 "Embedded" standard partitioning rules:

I Take

Include

Exclude

Etc.

CHER Operation Domains

Three Domains have been defined: DCS

- I For equipment which operation and stability is normally related to a complete running period Example: GAS, Cooling, Low Voltages, etc.
- I HV
 - I For equipment which operation is normally related to the Machine state. Example: High Voltages
- DAQ
 - I For equipment which operation is related to a RUN Example: Readout electronics, High Level Trigger processes, etc.

DCS Domain

DAQ Domain

HV Domain

All Devices and Sub-Systems have been implemented using one of these templates

Here ECS: Run Control

Size of the Control Tree:

- Distributed over ~150 PCs
 - 1 ~100 Linux(50 for the HLT)
 - I ~ 50 Windows
- >2000 Control Units
- >30000 Device Units

The Run Control can be seen as:

- The Root node of the tree
- If the tree is partitioned there can be several Run Controls.

LHCB Run Control

KKCB Partitioning

Creating a Partition

- Allocate = Get a "slice" of:
 - I Timing & Fast Control (TFC)
 - I High Level Trigger Farm (HLT)
 - I Storage System
 - I Monitoring Farm

Sub-Detector Run Control

🔹 VELO: TOP

KRCP Conclusions

- LHCb has designed and implemented a coherent and homogeneous control system
- The Run Control allows to:
 - Configure, Monitor and Operate the Full Experiment
 - Run any combination of sub-detectors in parallel in standalone
 - Can be completely automated (when we understand the machine)

Some of its main features:

- Sequencing, Automation, Error recovery, Partitioning
- Come from the usage of SMI++ (integrated with PVSS) (Poster no: 540, Board no: Thursday 103)
- It's being used daily for all sub-detector tests and global activities