CMS Data Acquisition System Software

G. Bauer¹, U. Behrens², K. Biery³, J. Branson⁴, E. Cano⁵, H. Cheung³, M. Ciganek⁵, S. Cittolin⁵, J.A. Coarasa^{4,5}, C. Deldicque⁵, E. Dusinberre⁴, S. Erhan^{5,6}, F. Fortes Rodrigues⁷, D. Gigi⁵, F. Glege⁵, R. Gomez-Reino⁵, **J. Gutleber⁵**, D. Hatton², J.F. Laurens⁵, J.A. Lopez Perez⁵, F. Meijers⁵, E. Meschi⁵, A. Meyer^{2,5}, R. Mommsen³, R. Moser^{5,9}, V. O'Dell³, A. Oh⁵, L.B. Orsini⁵, V. Patras⁵, C. Paus¹, A. Petrucci⁴, M. Pieri⁴, A. Racz⁵, H. Sakulin⁵, M. Sani⁴, P. Schieferdecker⁵, C. Schwick⁵, D. Shpakov³, S. Simon⁴, K. Sumorok¹, J. Varela^{5,8}, M. Zanetti⁵

¹MIT, Cambridge, USA; ²DESY, Hamburg, Germany; ³FNAL, Chicago, USA; ⁴UCSD, San Diego, USA; ⁵CERN, Geneva, Switzerland; ⁶UCLA, Los Angeles, USA; ⁷CEFET/RJ, Brazil; ⁸LIP, Lisbon, Portugal; ⁹Technical University, Vienna, Austria

CHEP - March, 2009

Outline

- Motivation & Requirements
- Architecture
- Codebase
- History of the development
- Achievements
 - Event builder
 - HyperDAQ
- Summary
- Conclusion

Motivation

- CMS consists of a set of sub-projects
 - Similar to a coordinated set of small experiments
 - Many scenarios: central DAQ, subdetector DAQ, testbeams,
- Geographically dispersed participants
- Autonomous developments
- High personnel turnover
- High performance requirements
- Long lifetime and need to survive technology generations
- Similar tasks to be performed in each sub-detector

Need for integration

No single tool available

Functional Requirements

- Communication and Interoperability
 - Transparent use of communication protocols
 - Possibility to add new protocols
 - Concurrent use of multiple protocols
- Device Access
 - Access to custom devices
 - Transparent access to local & remote devices (bus adapters)
- Configuration, control and monitoring
 - Inspect and modify simple/complex parameters
 - Coordinate of application components
 - Record structured information
 - Uniform logging, error reporting, monitoring
 - Interface to persistent data stores

Non-Functional Requirements

- Maintainability and Portability
 - Portability across operating system and hardware platforms
 - Add new electronics without functional changes in user software
 - Memory management functionality to
 - improve robustness
 - give room for efficiency improvements
 - Application code shall be invariant with respect to the physical location and the network
 - Foster working with re-usable building blocks

Non-functional Requirements

Scalability

- Operate within requirements if size or volumes change
- Take advantage of additional resource availability
- Overhead introduced by the software environment must be constant for each transmission operation and small with respect to the underlying communication hardware in order not to introduce unpredictable behaviour

Software Infrastructure

- Software as an integral part of the architectural scaffolding
- Software provides centrally designed efficiency enablers

Context

Architecture Foundation

Uniform building block

One or more executives per computer contain application and service components

Architecture Foundation

Dynamic configuration Tool-based Of the CMS Data configuration, **XML Acquisition Cluster** see talk by H. Sakulin **Executive Application** Components Fast control **HTTP** 120/ Control SOAP B₂IN and data Service Plug-ins Custom device **Devices** access

Architecture Foundation

Replicated building blocks

Scalable cluster system architecture

Layered View

DAQ Applications

Event Builders

Front-end Controllers

User Interfaces Detector Specific Applications

Online Software Infrastructure Data Monitoring Error/Alarm Distribution

Job Control

User Interfaces

OS Abstraction

Executive Framework

Hardware Access

Communication Subsystems

Configuration Management Support

Platforms

Operating Systems

Networking Infrastructures

Hardware Device Interfaces

Work Suite

Codebase

Lines of C++ code

Package	.cc	.h	Sum
Coretools	62'304	43'169	10'5473
Powerpack	57'031	18'786	75'817
Worksuite	138'166	76'875	215'041
Total	257'501	136'636	396'331

Packages

Package	Packages	RPMs
Coretools	9	20
Powerpack	5	34
Worksuite	34	43
Total	48	97

Personnel

People over the whole development period

Package	FTE	Persons
Coretools/Powerpack	3	≥4
Worksuite	5	≥6
Total	8	≥ 10

- Figures are given as an indication and do not represent the actual number of employed personnel
- Tasks of personnel includes design, planning, development, documentation, support and consultancy to users
- FTEs are distributed to a changing number of people. About half of the persons were directly employed, the other half was changing personnel
- Production quality code done by long-term employed personnel

Timeline

Well consolidated after eight years

of development and use

2008

Commissioning and first beam event successfully achieved XMAS – monitoring, orthogonal to applications

2006

XDAQ 3 – experiment wide adoption

2004

XDAQ 2 – Web enters DAQ (SOAP)

2002

2000

First version of XDAQ - I₂O communication kernel

Need for common platform arises

(3 operating systems, many different develoments)

Timeline

- Generic event builder
- Web technologies in DAQ

Web Peer (HyperDAQ)

SOAP/HTTP PT:

Each application becomes browsable through an embedded HTTP/SOAP peer transport.

-Navigate directly to each application in the cluster

-Applications implement application specific web pages and callbacks

-Components become truly reflective (make themselves visible)

-Gradual integration from manual to automatic through scripts and programmatic approaches

HyperDAQ

Browsable

Cluster

PeerTransportFi[...]

urn:xdaq-application:lid=8

XRelay

um:xdaq-application:lid=4

HyperDAQ

um:xdag-application:lid=3 um:xdag-application:lid=300

Web reflectable applications

RU8 Version 3.4 Halted

Tester

Summary				
throughput0.000000e+00				
average	0.000000e+00			
rate	0.000000e+00			
rms	0.000000e+00			

Standard configuration nbEvtldsInBuilder 4096

blockFIFOCapacity 16384

Standard monitoring				
class	RU			
instance	8			
hostname	http://rubu9.cmsdaqpreseries:1972			
deltaT	1.010108e+00			
deltaN	0			
deltaSumOfSquares	0.000000e+00			
deltaSumOfSizes	0			
nbSuperFragments	0			
stateName	Halted			
I2O_RU_DATA_READY_Payload	0			
I2O_RU_DATA_READY_LogicalCou	nt0			
I2O_RU_DATA_READY_I2oCount	0			
I2O_RU_READOUT_Payload	0			
I2O_RU_READOUT_LogicalCount	0			
120 RH READOUT 120Count	0			

Done

XAct

HyperDAQ um:xdaq-application:lid=8 um:xdaq-application:lid=4 um:xdaq-application:lid=3 um:xdaq-application:lid=300

Monitor

um:xdaq-application:lid=14 um:xdaq-application:lid=23 um:xdaq-application:lid=9

Done

Generic Event Builder

- Configurable in size and network technology
- Customization at boundaries through pluggable components

Scaling by Configuration

Reconfigure System size 500 RU, 1000s of BU

Reconfigure Communication

1 to 4 GBE ports

Usage Outside CMS

PRISMA and GASP

 DAQ systems have been put in place by INFN Legnaro (Italy) using versions of the CMS online software

AGATA

- In development
- New HEP experiment with readout part taking advantage of XDAQ
- DABC (GSI)
 - See talk from Hans Essel
 - Data Acquisition Backbone Core
 - Much work on Infiniband done

Summary

- Concentrate DAQ expert knowledge in one place
 - Software used in larger context is better understood
 - Avoid repeating same mistakes
- Provide uniform infrastructure to all groups in the experiment that need DAQ functionality
 - Work by product not by specification
 - Stability and fitting the requirements are key
- Ensure that good efficiency is achieved under different operating conditions

Conclusion

Strive towards building a DAQ system as a process of assembly re-usable components in a predetermined way rather than a programming task.

Achieved a uniform DAQ product-line for all CMS data acquisition application scenarios ranging from single CPU setups to the final systems comprising thousands of nodes.

http://cern.ch/xdaq