

A Geant4 physics list for spallation and related nuclear physics applications based on INCL and ABLA models

<u>Aatos Heikkinen¹</u>, Pekka Kaitaniemi^{1,2}, Alain Boudard², Gunter Folger³

¹ Helsinki Institute of Physics, P.O.B. 64, FIN-00014 University of Helsinki, Finland
² CEN-Saclay, CEA-IRFU/SPhN, 91 191 Gif sur Yvette, France
³ European Organization for Nuclear Research (CERN), Switzerland

ABSTRACT

We have introduced INCL [1] intranuclear cascade model in Geant4 9.2 [2]. The INCL model is well established for targets heavier than Aluminium and projectile energies from ~ 150 MeV up to 2.5 GeV ~ 3 GeV [3].

We present a new **Geant4** physics list, based on **INCL** and **ABLA** models, prepared for nuclear physics applications in the domain of accelerator driven systems and EURISOL project.

GEANT4 PHYSICS LISTS

A unique feature of **Geant4** is to *decouple physics models, cross sections, and processes* using abstract interfaces, and manage the usage of different options with so-called the physics lists.

 Physics lists allow users to find good balance between various goals (e.g. CPU time requirements vs. accuracy of results).

FRAGMENT YIELD

Fragment production of the INCL and ABLA [4, 5, 6] models. Black and

LIGHT TARGETS

We have introduced a cut to choose between ABLA and Fermi break-up for light targets. So, INCL can now be used with the Geant4 Fermi break-up model.

Currently, INCL interface provides Fermi break-up [8] for remnant nuclei lighter than A = 13 and ABLA for heavier elements.

1 GeV PROTON ON CARBON

Massnumber distribution

• Also, the **Geant4** physics system can be easily extended.

template<class T > class TQGSP_INCL_ABLA< T

Physics list QGSP_INCL_ABLA

Use case

This list is mainly intended for use with energies less than 3 GeV. This is useful for e.g. spallation studies and Accelerator Driven Systems (ADS) applications.

Usage

The physics list can be activated in a simulation application by giving it as part of the user initialization to the run manager:

G4RunManager *runManager = new G4RunManager; G4VUserPhysicsList *physics = new QGSP_INCL_ABLA; runManager->SetUserInitialization(physics);

Hadronic models

The list uses INCL/ABLA intra-nuclear cascade and de-excitation models in the energy range 0 - 3 GeV. Above these energies QGSP model is used.

See also

HadronPhysicsQGSP_INCL_ABLA

- G4 InclAbla Pro to nBuilder
- G4 InclAbla Neutro nBuilder

G4 InclAbla Pi KBuilder

Definition at line 74 of file QGSP_INCL_ABLA.hh.

A NEW PHYSICS LIST

We have implemented a new physics list called QGSP_INCL_ABLA with spallation physics in mind.

It uses INCL/ABLA models for proton, neutron and pion inelastic interactions in the energy range 0 - 3 GeV. red histograms are the results from the original FORTRAN version and new C++ implementation, respectively. Data is from Ref. [7].

NEUTRON PRODUCTION

p(1.2 GeV) + Al (INCL4+ABLA)

Double-differential for neutron production cross section from Geant4 INCL and ABLA models. Black and red histograms are the results from the original FORTRAN version and new C++ implementation, respectively.

Data is from Ref. [9].

CARBON PROJECTILES

Carbon beams are of particular interest for medical applications of **Geant4**, and recently, a Carbon projectile support has been added to the **INCL** cascade.

An ongoing work is to improve of the physics models for the treatment of light ion beams up to Carbon.

References

- A. Boudard et al., Intranuclear cascade model for a comprehensive description of spallation reaction data, Phys. Rev. C66 (2002) 044615
- [2] Geant4 collaboration website http://cern.ch/geant4
- [3] A. Heikkinen, P. Kaitaniemi, and A. Boudard, Implementation of INCL4 cascade and ABLA evaporation codes in Geant4, Journal of Physics: Conference Series 119 (2008) 032024, [doi:10.1088/1742-6596/119/3/032024]
- [4] J. Benlliure et al., Calculated nuclide production yields in relativistic collisions of fissile nuclei, Nuc. Phys. A628 (1998) 458
- $\left[5\right]$ J. J. Gaimard et al., , Nuc. Phys. A531 (1991) 709
- [6] A. R. Junghans et al., Nuc. Phys. A629 (1998) 635
- $\left[7\right]$ T. Enqvist et al. , Nucl. Phys. A686 (2001) 481
- [8] Geant4 Physics Reference Manual: INCL 4.2 Cascade and ABLA V3 Evaporation with Fission
- [9] X.Ledoux et al., Spallation Neutron Production by 0.8, 1.2, and 1.6 GeV Protons on Pb Targets Phys. Rev. Lett. 82 (1999)