Development of DAQ-Middleware

Y. Yasu^a, K. Nakayoshi^a, H. Sendai^a, E. Inoue^a, M. Tanaka^a, S. Suzuki^a, S. Satoh^a, S. Muto^a, T. Otomo^a, T. Nakatani^b, T. Uchida^c, N. Ando^d, T. Kotoku^d, S. Hirano^d

^aHigh Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305.0801, Japan ^bJ-PARC Center, Tokai-mura, Naka-gun, Ibaraki, 319.1195, Japan ^cThe University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113.0033, Japan ^d National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan

Contents

- Feature of DAQ-Middleware
- Performance of DAQ-Middleware
- DAQ-Middleware activity at J-PARC
- Conclusions

Feature of DAQ-Middleware

DAQ-Middleware based on RT-Middleware

- DAQ-Middleware is a software framework of network-distributed DAQ system based on Robot Technology (RT) Middleware
- RT-Middleware is an international standard of Object Management Group (OMG) not only for Robotics but also embedded system
- The software package of RT-Middleware was developed by National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

DAQ-Middleware based on RT-Middleware (Cont.)

- "The Robot Technology Component Specification "@OMG specifies;
 - Platform-Independent Model (PIM) expressed in UML and Platform-Specific Models (PSMs) expressed in OMG IDL. PIM does not depend on programming languages, operating systems and communication media& protocol. PSM is still independent of programming languages and operating systems.
 - In the OpenRTM-aist implementation of AIST we use, C++ and Python as programming language and CORBA as communication protocol were adopted.
- RT-Middleware will be expected to stop "scrap and building" cycles and make software infrastructure of robotics and embedded system.

Introduction of DAQ-Middleware

• DAQ-Component is a software unit used to build an integrated DAQ system

- DAQ-Operator is a special DAQ-Component which controls other DAQ-Components
- The databases for system configuration (configuration database) and equipment parameters (condition database)
- Web interface(XML/HTTP protocol) as system interface to external world
- Booting mechanism of DAQ-Components over network

22-28 March 2009

CHEP2009@Prague

Autonomous component model

- Data Port and Service Port are used for Data path and command/status path, respectively
- Autonomous main thread is used for core logic

Configuration/condition database

System interface

22-28 March 2009

An architecture of DAQ-Middleware based system

Summary of features

22-28 March 2009

CHEP2009@Prague

Performance of DAQ-Middleware

Purpose of measurement

 To measure the total throughput of a basic DAQ unit of DAQ-Middleware for MLF's requirements (first target experiments)

Requirements:

1. Basic DAQ unit

- -Gatherer, Dispatcher, Logger and Monitor components on a PC
- -A readout PC governs a VME crate (20 modules)
- -Max. throughput on the module is 1.28MB/s
 - -A module has 8 channels of Position Sensitive Detector(PSD)
 - -Max. event rate of a PSD: ~20kcounts/s (160kB/s)
- 2. Total throughput(average) is about 30MB/s on multiple DAQ units3. Acquired data are stored into files in unit of the module

Equipment for readout used by measurement

- Typical detector for MLF/neutron experiments is PSD
- NEUNET is the readout module with SiTCP
 - SiTCP: a hardware-based TCP processor
- NENUET emulator with traffic shaper is really used for the measurement

NEUNET and PSD

Testbed and Setup

- NEUNET emulator
 - Xilinx Starter Kit x 30
- Network switch
 - Cisco Catalyst 2960G-24TC-L x 2
 - Cisco Catalyst 2960G-8TC-L x 1
- PC(HP xw8600)
 - CPU: Quad-Core Xeon x 2

The parameters

PC: HP xw8600

CPU: Quad-Core Xeon E5420(2.5GHz/12MB x2)

Intel 5400 Chipset(1333MHz/1600MHz FSB)

memory: 16GB

Disks: HITACHI HDS721010KLA330

1TB/32MB Cache/7200rpm/SATA 3GB/s) x 4

OS: Red Hat Enterprise Linux Client release 5.3

kernel: 2.6.18-128.1.1.el5PAE

gcc: gcc version 4.1.2 20080704 (Red Hat 4.1.2-44)

File System: Ext3

I/O Scheduler: Anticipatory

Kernel Parameters

/proc/sys/net/ipv4/tcp_rmem 4096 4194304 4194304 /proc/sys/net/ipv4/tcp_wmem 4096 65536 4194304

/proc/sys/vm/dirty_background_ratio_1 or 10(default)

/proc/sys/vm/dirty expire centisecs 2999

/proc/sys/vm/dirty_ratio 40

For Network

For Disk I/O

The conditions

- Three data logging conditions:
 - No logging
 - Logging with single disk
 - Logging with striping disks (four disks)
- Changing a kernel parameter
 - vm.dirty_background_ratio: 1, 10(default)
- The emulators used from 1 to 30
 - data rate at an emulator is 1.28MB/s

dirty_background_ratio means:

a percentage of total system memory, the number of pages at which the pdflush background writeback daemon will start writing out dirty data.

Total throughput w/o data logging

22-28 March 2009

CHEP2009@Prague

Total throughput w/ data logging

The result could satisfy the requirement from MLF

DAQ-Middleware activity at J-PARC

J-PARC

Japan Proton Accelerator Research Complex

22-28 March 2009

CHEP2009@Prague

Material and Life Science Facility(MLF)

22-28 March 2009

Commissioning on Neutron Beamline

Commissioning was carried out following items at iMATERIA (IBARAKI material design diffractometer), Beam Line 20 (BL20)

on MAY 2008, First beam of Neutron

- Electronics
- DAQ-Middleware
- Software Framework(called Working Desktop)
- **Offline analysis**
- DAQ-Middleware functions
- data readout/storage ____
- Web-enabled run control
- Web-enabled Online monitoring a basic DAQ unit
 - (2-d histogram, TOF, position)

Commissioning on Muon beamline

First beam of muon (2008/9):Data Taking with DAQ-Middleware

@ 🗇 🖾 XTer...) 🗟 daq...) 🗟 daq...) 🗟 daq...) 🕲 (Des...) 🔮 chan... 🖸 unttl...) 🖾 unttl... 😰 c1 😰 c1_n2 (😰 c1_n3) 🕲 (Trash) 💼

22-28 March 2009

Current status of MLF/Neutron(Mar. 2009)

Groups in DAQ-Middleware operating / ready phase : 5 groups **BL01 BL03 BL19 BL20 BL21** Groups in DAQ-Middleware preparatory phase : 7 groups **BL02 BL08 BL11 BL12 BL14 BL15 BL16**

22-28 March 2009

CHEP2009@Prague

conclusions

- We have developed DAQ-Middleware which could be applied to real experiments.
- We have applied experiments of MLF and have met the requirement.

Acknowledgements

- We wish to thank Prof. J. Haba at KEK for his support of this project. This work was performed in next generation DAQ sub-group of the KEK Detector Technology Project at KEK.
- We also thank staff of experimental groups at MLF and KEK electronics system group for their help.

backup

A system based on RT-Middleware

Introduction of SiTCP

Technology connecting to small device such as front end with high speed!

Ethernet PHY device

10Mbps, 100Mbps, Gigabit

FPGA

Small board

without CPU

Capability of communication with TCP/IP on Ethernet

Feature of SiTCP

22-28 March 2009

CHEP2009@Prague