Parallelization of ALICE simulation

a jump through the looking-glass

Matevz Tadel & Federico Carminati

Outline

[. Introduction — why

[I. Workbook - what & how

[IT.Results / comparisons

['\/. Conclusion

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 2

Intro — Motivation

1. Exploitation of many-core CPUs.
2. Code-review of simulation code.

O Just do it:

i. How well does it work? S
2. How hard is it - what skill level is reqwred?

3. What are required changes in AliRoot and externals?
4. Make an informed plan for further work.

O Simulation a good candidate:
" No input and little output — evaluate CPU usage.
*= Simulation code not expected to change.

O Mission: Parallelize simulation with Geant3
as far as needed to have a full picture.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 3

Intro — ALICE simulation facts

O Transport engines:
*" Geant3 - main engine, used for all productions
" Fluka & Geant4 interfaces basically done

0 Geometry
" TGeo used everywhere (also in reconstruction)

O Implemented as Virtual MonteCarlo (VMC) appl.
= All geometrical queries done in TGeo!

O Simulation job for a central PbPb event:
" # primaries: ~65k tracked
" time: ~5h [x2 for F & G4]
= output: Kine: 26M, Hits: 274M
" memory: 572M (1.2G virtual) [~same for F & G4]

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 4

Workbook - What we did -~

O Geant3 made thread-safe:
OpenMP => all commons and static data made thread-private

O TGeo made thread-safe: TGeoNavigator was already there.
Introduced thread-specific structures for five classes.

O Implemented a VMC application supporting tracking of
several concurrent primaries in dedicated threads.

= Simulation threads take primaries from global stack.
= Data is written out after each primary.

Not a big change to switch to event/job-level paralellism.

Tools:

O gcc-4.3 branch ~4.3.4

O OpenMP limited usage (threadprivate pragma)

O Posix threads in particular thread-specific data

O Computer 4-core x86_64, 4GB RAM, linux-2.6.27 64-bit

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 5

Workbook - Process scheme

Init Geom, Mag Field N G ==

Open Files
Create stack,
setup random numbers

stack and hits

% E Purify & renumber % Purify & renumber
stack and hits

v

Collect threads

Output: Output:
Set branch adresses Set branch adresses
TTree:Fill(} TTree:Fill()

critical sections

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 6

Results — Correctness testing

Use simple geometry from G4-VMC/Example03.
" Make sure one gets identical results (which we do).
"= UselTeVe, pandn.

® For hadronic processes:
O increase EM cuts to get ~75% of hadronic secondaries;
0 Otherwise EM processes dominate.

For correctness testing:
= particles were accumulated till the end (no output)
" hits were not stored (not much memory allocation)

For 4 cores: 3.92 speedup (including initialization)

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 7

Results — ALICE disclaimer Z

We used ALICE geometry, but not full AliRoot:
O Using AliRoot would only affect step-sizes and cuts.
O Use a single step-callback / hit processing function.

The base-line memory is larger for AliRoot:
1. Resident: 570 MB [180 MB in further results]
2. Virtual: 1200 MB [320 MB in further results]

This includes all memory usage by a single
threaded process: code, containers, 10 buffers.

Memory usage per thread is realistic!

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 8

Results — Initial memory usage

Initialization of MC-threads - basically Geant3.

Could be further reduced (share cross-section data)

= Separate shared part of Geant3 commons - init them once.
= KSM

This is a start - we will also get:

1. particle-stacks & hit containers [TClonesArray per primary]
2. IO buffers.

| Geant3 VMC Ex03, 100 e @1TeV | | Geant3 VMC Ex03, 100 e @1TeV |
W F i .
£ 240 Resident g I Virtual
2 220 S 400
= F 46.4 MBytes / thread = 56.6 MBytes / thread
% 200 Conditions + é |_ |Conditions +
@ 4 8oL |~ standard :E 350 | ~+ Standard
ﬂEf C | =1 thread @ [| =~ 1 thread
é 160 || —~ 2 threads + 1 1 = I | = 2 threads N 1
- |+ 3 threads 300__ + 3 threads
140: == 4 threads | =+= 4 threads
120— B
100F- I T T 250 :-j[1 1
80 }1 -
60:_I ||||||||| |||||| IIITIII ||||IITIIII|IIII__I 200_||||||| | - |||||| IIITIII ||||IITIIII| L1
. 2 3 . 2 3

35 4
Nlhreads

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 9

Results — ALICE - no output I. Z;

Memory: +35MB/thr [65V] 5“1"‘3"”‘”‘“”“' = pﬁma::'k' i
Stack & TGeo thread-data i e
Speed: 3
1. 9% loss - see next slide : i
2. Scaling slightly degraded: F
a) Realistic geometry

b) Uneven # of secondaries 0500 1000 1500 2000 2500 3000 'ésllzl'is']

| Geant3 VMC ALICE, 64k primaries | | Geant3 VMC ALICE, 64k primaries

—
W
QQ

450 2 700
% E l l':‘% C f |
% 4005— % 6001
é 350 — h é
= e = 500—
3 300 8 0 M B / t I s %00
- S w0t 110MB/thr
g 250 € 400—
2001 300"
150 :_ Conditions E Conditions
F —— Standard 200— —— Standard
100— —— 1 thread C —— 1 thread
= 2 threads . 100 2 threads -
50— 3 threads Resident C 3 threads Vl rtual
E | | | —— 4 threads I I - | | | —— 4 threads I I
0 0 10000 20000 30000 40000 50000 60000 0 0 10000 20000 30000 40000 50000 60000

Entry [~Primary Id] lization Entry [~Primary Id]

Results — ALICE - no output II.

Callgrind on tracking of one 1 TeV e
" 20% spent in __tls_get _addr() [with Ex03 geom]
" every access to a common variable goes via this!

Complained to gcc mailing list, proposed to get the
base-address once at each function entry.

Still an open issue. If fixed, loss would only be 1%.

estimated from # of calls and # of function entries

We were told to use static linking — that there is no
penalty there. Still on our ToConsider stack.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 11

Results — ALICE — 300MB output

i. Scaling for 4 threads: memm o
3.69 (down from 3.79) e
Locking during output. _

i. Memory: +5MB/thr [OV]

i. TClonesArray for hits -
2. 10 buffers for particles/hits e i s dood s Hob™ 45

tis]
| Geant3 VMC ALICE, 64k primaries | | Geant3 VMC ALICE, 64k primaries
E 450] g l
= @ 600
E 400 — =
g 3503— 2 00/
2 qoof 85MB/thr : °
- 2 110MB/th
g 250 g f I
2001 - S0 F—'—‘
150 :_ Conditions :_ Conditions
E —— Standard 2001 —— Standard
100 =— —— 1 thread . C —— 1 thread H
; Sihreacs Resident 100 2 threads Virtual
50— 3 threads C 3 threads
= | —— 4 thread C | —— 4 thread
U= 0 - |1|00l]|0| |2|000i]| ISIOIIJIJII]I |4|0l|10|0| ‘SIOIJIJIIJI Iﬁlﬂl]llllll I U= 0 - |1|0I]l]|l]| IZIOUUhI ISIBIIJIJIIJI I4II]l|]l]|I]| ‘Slﬂl]llll]l IBIBIJIJIIJI I
Entry [~Primary Id] Entry [~Primary Id]

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 12

Results — ALICE - 2GB output

Geant3 VMC ALICE, 64k primaries Conditions

Check impact of more IO. e ok | i
Compression: 15% more CPU £ . —— o
1. Less difference for 1 thr.
>, Poorer scaling: sequential I0 § .

begins to bite
Memory increases: larger 10

PRI T SRS O PP [P IR IR O 0
0 500 1000 1500 2000 2500 3000 3500 4000

buffers. .

| Geant3 VMC ALICE, 64k primaries | Geant3 VMC ALICE, 64k primaries
T F F10007
] — H O ~
£ oo Resident £ T Virtual
1] m
£ £
£ 500 5 00
T £ L
2 =
ﬂEﬂ 400 — E 600 —
5 3
2 a0l 135MB/thr - 175MB/thr
400—
200— Conditions B Conditions
—— Standard —— Standard
—— 1 thread 200— —— 1 thread
100 — 2 threads L 2 threads
C 3 threads - 3 threads
E — | —— 4 thread.
0= 0 - I1IﬂIIIIII|l] I I2|l]lill]‘lil I I:!Itllilllilll]I I4:i]lilll]|lilI | SIGJIIIIIIIIIII IGlﬂlillilll] . U= 0 - I1lﬂlillilll] I IZIGJIIlIJ‘III I IIiltllilllilll]I I4:0lilll]|lilI | SIBIIIIIIIIIlI IGlﬂlillilll] -
Entry [~Primary Id] Entry [~Primary Id]

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 13

Avoid waiting for serialization!

Particle/hit arrays created as
needed [eg. ~20 for 4 threads]

O

O

Memory usage per thread doubles.

As arrays get passed among
threads, speed is affected, too.
Limit # of containers per thread?

The solution: Fill and compress
output buffers in the MC thread!

| Geant3 VMC ALICE, 64k primaries |

[
(=]
o

fMemVirtual [MBytes]
{+-] (=]
= =
(=] (=]

[=1]
(=
o

400

200

1 Virtual

190MB/thr

nnnnnnnn

0 10000 20000 30000 40000 50000 60000

Entry [~Primary Id]

-allelization of

Conditions

Stage [3 - 2: running; 0: end]

—+— Standard

—+— 1 thread
+— 2 threads
+ 3 threads

—+— 4 threads

64k

2

Results — Output in a dedicated thread=—

Geant3 VMC ALICE, 64k primaries

Codlnnnnlanaallannnlnnl ofllonnnloonallalhondla!
0 500 1000 1500 2000 2500 3000 3500
t[s]

[with output size 300MB]

| Geant3 VMC ALICE, 64k primaries |

fMemResident [MBytes]
(24 [=1] =] -]
= = = =
o o o (=]

~
o
=)

300

200

100

Resident

245MB/thr

d ‘0 10000 20000 30000 40000 50000 60000

Entry [~Primary Id]

Results — Realistic comparison

Compare under same CPU load (300MB output):
i. 4 single-threaded jobs running concurrently
2. 4 four-threaded jobs running sequentially

Wall-time-ratio: 0.942 [would be 0.923 taking 3.69 speedup]
With parallel thread initialization becomes 0.976.
Memory-ratio: 1.77 [1.93 virtual]
For AliRoot one should add +400MB [+900MB virtual] per process:
ratio becomes 2.8 [3.0 virtual]

Resident Virtual
o = i -
S s00f o S
o 800 5‘ B
= Conditio = - Conditions
E 700 4 concurrent jobs, 1 thrand §1200 [4 concurrent jobs, 1 thread
- £ |
E 600— 4 sequential jobs, 4 threads S 1000 4 sequential jobs, 4 threads
I E
£ 500 é
2 800—
5

~]

— — |
400— C
300 B

- 400
200 B

100 2001—

L1 L | L1 - - _I L L1l | L1l L | Ll 1 ‘ L L1l | L L1l | L1l L | Ll 1 ‘ 1 -
500 1000 1500 2000 2500 3000 3500 lization 0 0 500 1000 1500 2000 2500 3000 3500
Time [s] Time [s]

Conclusion

We consider this a successful attempt:
s We have a testing / benchmarking framework for
parallelization of simulation.
= Memory usage per thread ~100MB - very good!
s Scaling - issues, but satisfactory.
s Problems are part of the game - start early!

Memory buffers and IO are crucial.
For track-parallelism need thread-safe way of filling 7TTrees.

Structure of code improves with thread-safety:
" clear separation between local and task data;
= task context naturally becomes thread-private.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 16

Further work

O Open issues:
" Follow-up on thread-private data access in OpenMP
" Try KSM and HOARD memory allocator
" Try running on machines with more cores

O Plans:
" Push thread-safe TGeo into ROOT

" Consider event-level and job-level parallelization
* Consider other transport engines - with VMC!
= Explore VMC parallelization towards a final solution

o Use all this with ALICE simulation
* When issues resolved and ground-work finished

* Digitization — memory usage goes to 2GB virtual!

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 17

.

-

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 18

Workbook - Geant3 and TGeo

O Geant3 thread-safety

"= Use OpenMP to make all commons and saved
variables thread-private

= [Issue: equivalence between thread-private
variables not allowed by OpenMP specification
0 Requested extension - now an open issue in gcc tracker

O TGeo thread-safety

®= Most work already done by the author (A. Gheata)
o Class TGeoNavigator — contains tracking state & stack

* A couple of small structures made thread-private
o Voxelization and division — navigation optimizations
o Composite shapes and shape assemblies - state info

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 19

Workbook - VMC

0 As VMC is virtual, it is hard to parallelize ©
= TGeant3 and its subclass TGeant3TGeo
= Example03 from Geant4 (simple Pb calorimeter)

But general concepts could go into the base classes.

0 TMCContext - encapsulate tracking state for
each primary:

i. MC transport engine (TGeant3TGeo)

2. Particle stack and Hit container

3. Random generator (seeds set per primary)
4. TGeoNaviagator

Stored as thread-specific data.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 20

Workbook — Running scheme

i. Initialize geometry and magnetic field

2. Initialize worker threads:
O N transport threads (nice 20)
O optional - dedicated output thread
Can be done in parallel ... left like this for monitoring.

O Run the threads - feed them from top-level primary stack
1. Get primary, setup random seed
2. Process with inner MC loop

3. Output particles and hits:

Without IO thread:

O TBranch::SetAddress() - for particles and hits

O TTree::Fill() - fill the trees, compression is also done here
With IO thread:

1. Pass TClonesArray’s to output queue
2. Acquire a new set of arrays from a pool (or create new ones)

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 21

Workbook — The missing page

O We didn’t run these tests in full AliRoot.

O In particular, this avoids the detector-specific
code for Hit processing and setting of step-size.

* Not much would have to be changed there:

Get virtual MC and Hit arrays as arguments
(from context)

Some static variables need to be removed.

95 files would need to be modified.

" The detailed changes will depend on the final form
of parallelized VMC and TGeo.

o But we were running with full ALICE geometry.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 22

	Parallelization of ALICE simulation
	Contents
	Intro – Motivation
	Intro – ALICE simulation facts
	Workbook – What we did
	Workbook – Process scheme
	Results – Correctness testing
	Slide 8
	Results – Initial memory usage
	Results – ALICE – no output I.
	Results – ALICE – no II.
	Results – ALICE – 300MB output
	Results – ALICE – 2GB output
	Results – Output in a dedicated thread
	Results – Realistic comparison
	Conclusion
	Further work
	Slide 18
	Workbook – Geant3 and TGeo
	Workbook – VMC
	Workbook – Running scheme
	Workbook – The missing page

