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Intro — Motivation

1. Exploitation of many-core CPUs.
2. Code-review of simulation code.

O Just do it:

i. How well does it work? S
2. How hard is it - what skill level is reqwred?

3. What are required changes in AliRoot and externals?
4. Make an informed plan for further work.

O Simulation a good candidate:
" No input and little output — evaluate CPU usage.
*= Simulation code not expected to change.

O Mission: Parallelize simulation with Geant3
as far as needed to have a full picture.
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Intro — ALICE simulation facts

O Transport engines:
*" Geant3 - main engine, used for all productions
" Fluka & Geant4 interfaces basically done

0 Geometry
" TGeo used everywhere (also in reconstruction)

O Implemented as Virtual MonteCarlo (VMC) appl.
= All geometrical queries done in TGeo!

O Simulation job for a central PbPb event:
" # primaries: ~65k tracked
" time: ~5h [x2 for F & G4]
= output: Kine: 26M, Hits: 274M
" memory: 572M (1.2G virtual) [~same for F & G4]
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Workbook - What we did -~

O Geant3 made thread-safe:
OpenMP => all commons and static data made thread-private

O  TGeo made thread-safe: TGeoNavigator was already there.
Introduced thread-specific structures for five classes.

O Implemented a VMC application supporting tracking of
several concurrent primaries in dedicated threads.

= Simulation threads take primaries from global stack.
= Data is written out after each primary.

Not a big change to switch to event/job-level paralellism.

Tools:

O gcc-4.3 branch ~4.3.4

O  OpenMP limited usage (threadprivate pragma)

O Posix threads in particular thread-specific data

O  Computer 4-core x86_64, 4GB RAM, linux-2.6.27 64-bit
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Workbook - Process scheme

Init Geom, Mag Field N G ==

Open Files
Create stack,
setup random numbers

stack and hits

% E Purify & renumber % Purify & renumber
stack and hits

v

Collect threads

Output: Output:
Set branch adresses Set branch adresses
TTree:Fill(} TTree:Fill()

critical sections
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Results — Correctness testing

Use simple geometry from G4-VMC/Example03.
" Make sure one gets identical results (which we do).
"= UselTeVe, pandn.

® For hadronic processes:
O increase EM cuts to get ~75% of hadronic secondaries;
0 Otherwise EM processes dominate.

For correctness testing:
= particles were accumulated till the end (no output)
" hits were not stored (not much memory allocation)

For 4 cores: 3.92 speedup (including initialization)
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Results — ALICE disclaimer Z

We used ALICE geometry, but not full AliRoot:
O Using AliRoot would only affect step-sizes and cuts.
O Use a single step-callback / hit processing function.

The base-line memory is larger for AliRoot:
1. Resident: 570 MB [180 MB in further results]
2. Virtual: 1200 MB [320 MB in further results]

This includes all memory usage by a single
threaded process: code, containers, 10 buffers.

Memory usage per thread is realistic!
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Results — Initial memory usage

Initialization of MC-threads - basically Geant3.

Could be further reduced (share cross-section data)

= Separate shared part of Geant3 commons - init them once.
= KSM

This is a start - we will also get:

1. particle-stacks & hit containers [TClonesArray per primary]
2. IO buffers.
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Results — ALICE - no output I. Z;
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Results — ALICE - no output II.

Callgrind on tracking of one 1 TeV e
" 20% spent in __tls_get _addr() [with Ex03 geom]
" every access to a common variable goes via this!

Complained to gcc mailing list, proposed to get the
base-address once at each function entry.

Still an open issue. If fixed, loss would only be 1%.

estimated from # of calls and # of function entries

We were told to use static linking — that there is no
penalty there. Still on our ToConsider stack.
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Results — ALICE — 300MB output

i. Scaling for 4 threads: memm o
3.69 (down from 3.79) e
Locking during output. _

i. Memory: +5MB/thr [OV]
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Results — ALICE - 2GB output
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Avoid waiting for serialization!

Particle/hit arrays created as
needed [eg. ~20 for 4 threads]

O

O

Memory usage per thread doubles.

As arrays get passed among
threads, speed is affected, too.
Limit # of containers per thread?

The solution: Fill and compress
output buffers in the MC thread!
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Results — Output in a dedicated thread=—
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Results — Realistic comparison

Compare under same CPU load (300MB output):
i. 4 single-threaded jobs running concurrently
2. 4 four-threaded jobs running sequentially

Wall-time-ratio: 0.942 [would be 0.923 taking 3.69 speedup]
With parallel thread initialization becomes 0.976.
Memory-ratio: 1.77 [1.93 virtual]
For AliRoot one should add +400MB [+900MB virtual] per process:
ratio becomes 2.8 [3.0 virtual]
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Conclusion

We consider this a successful attempt:
s We have a testing / benchmarking framework for
parallelization of simulation.
= Memory usage per thread ~100MB - very good!
s Scaling - issues, but satisfactory.
s Problems are part of the game - start early!

Memory buffers and IO are crucial.
For track-parallelism need thread-safe way of filling 7TTrees.

Structure of code improves with thread-safety:
" clear separation between local and task data;
= task context naturally becomes thread-private.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 16



Further work

O Open issues:
" Follow-up on thread-private data access in OpenMP
" Try KSM and HOARD memory allocator
" Try running on machines with more cores

O Plans:
" Push thread-safe TGeo into ROOT

" Consider event-level and job-level parallelization
* Consider other transport engines - with VMC!
= Explore VMC parallelization towards a final solution

o Use all this with ALICE simulation
* When issues resolved and ground-work finished

* Digitization — memory usage goes to 2GB virtual!
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Workbook - Geant3 and TGeo

O Geant3 thread-safety

"= Use OpenMP to make all commons and saved
variables thread-private

= [Issue: equivalence between thread-private
variables not allowed by OpenMP specification
0 Requested extension - now an open issue in gcc tracker

O TGeo thread-safety

®= Most work already done by the author (A. Gheata)
o Class TGeoNavigator — contains tracking state & stack

* A couple of small structures made thread-private
o Voxelization and division — navigation optimizations
o Composite shapes and shape assemblies - state info
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Workbook - VMC

0  As VMC is virtual, it is hard to parallelize ©
= TGeant3 and its subclass TGeant3TGeo
= Example03 from Geant4 (simple Pb calorimeter)

But general concepts could go into the base classes.

0 TMCContext - encapsulate tracking state for
each primary:

i. MC transport engine (TGeant3TGeo)

2. Particle stack and Hit container

3. Random generator (seeds set per primary)
4. TGeoNaviagator

Stored as thread-specific data.
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Workbook — Running scheme

i. Initialize geometry and magnetic field

2. Initialize worker threads:
O N transport threads (nice 20)
O  optional - dedicated output thread
Can be done in parallel ... left like this for monitoring.

O Run the threads - feed them from top-level primary stack
1. Get primary, setup random seed
2. Process with inner MC loop

3. Output particles and hits:

Without IO thread:

O TBranch::SetAddress() - for particles and hits

O TTree::Fill() - fill the trees, compression is also done here
With IO thread:

1. Pass TClonesArray’s to output queue
2. Acquire a new set of arrays from a pool (or create new ones)
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Workbook — The missing page

O We didn’t run these tests in full AliRoot.

O In particular, this avoids the detector-specific
code for Hit processing and setting of step-size.

* Not much would have to be changed there:

Get virtual MC and Hit arrays as arguments
(from context)

Some static variables need to be removed.

95 files would need to be modified.

" The detailed changes will depend on the final form
of parallelized VMC and TGeo.

o But we were running with full ALICE geometry.
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