
Parallelization of ALICE simulation

Matevž Tadel & Federico Carminati

a jump through the looking-glass

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 2

Outline

I. Introduction – why

II. Workbook – what & how

III.Results / comparisons

IV. Conclusion

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 3

Intro – Motivation

1. Exploitation of many-core CPUs.
2. Code-review of simulation code.
 Just do it:

1. How well does it work?
2. How hard is it - what skill level is required?
3. What are required changes in AliRoot and externals?
4. Make an informed plan for further work.

 Simulation a good candidate:
 No input and little output – evaluate CPU usage.
 Simulation code not expected to change.

 Mission: Parallelize simulation with Geant3
as far as needed to have a full picture.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 4

Intro – ALICE simulation facts
 Transport engines:

 Geant3 – main engine, used for all productions
 Fluka & Geant4 interfaces basically done

 Geometry
 TGeo used everywhere (also in reconstruction)

 Implemented as Virtual MonteCarlo (VMC) appl.
 All geometrical queries done in TGeo!

 Simulation job for a central PbPb event:
 # primaries: ~65k tracked
 time: ~5h [x2 for F & G4]
 output: Kine: 26M, Hits: 274M
 memory: 572M (1.2G virtual) [~same for F & G4]

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 5

Workbook – What we did
 Geant3 made thread-safe:

OpenMP => all commons and static data made thread-private
 TGeo made thread-safe: TGeoNavigator was already there.

Introduced thread-specific structures for five classes.
 Implemented a VMC application supporting tracking of

several concurrent primaries in dedicated threads.
 Simulation threads take primaries from global stack.
 Data is written out after each primary.

 Not a big change to switch to event/job-level paralellism.

Tools:
 gcc-4.3 branch ~4.3.4
 OpenMP limited usage (threadprivate pragma)
 Posix threads in particular thread-specific data
 Computer 4-core x86_64, 4GB RAM, linux-2.6.27 64-bit

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 6

Workbook – Process scheme

critical sections

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 7

Results – Correctness testing

Use simple geometry from G4-VMC/Example03.
 Make sure one gets identical results (which we do).
 Use 1 TeV e-, p and n.
 For hadronic processes:

 increase EM cuts to get ~75% of hadronic secondaries;
 Otherwise EM processes dominate.

For correctness testing:
 particles were accumulated till the end (no output)
 hits were not stored (not much memory allocation)

For 4 cores: 3.92 speedup (including initialization)

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 8

Results – ALICE disclaimer

We used ALICE geometry, but not full AliRoot:
 Using AliRoot would only affect step-sizes and cuts.
 Use a single step-callback / hit processing function.

The base-line memory is larger for AliRoot:
1. Resident: 570 MB [180 MB in further results]
2. Virtual: 1200 MB [320 MB in further results]

This includes all memory usage by a single
threaded process: code, containers, IO buffers.

Memory usage per thread is realistic!

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 9

Results – Initial memory usage

Initialization of MC-threads – basically Geant3.
Could be further reduced (share cross-section data)

 Separate shared part of Geant3 commons – init them once.
 KSM

This is a start - we will also get:
1. particle-stacks & hit containers [TClonesArray per primary]
2. IO buffers.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 10

Results – ALICE – no output I.
Memory: +35MB/thr [65v]
 Stack & TGeo thread-data

Speed:
1. 9% loss - see next slide
2. Scaling slightly degraded:

a) Realistic geometry
b) Uneven # of secondaries

80MB/thr
110MB/thr

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 11

Results – ALICE – no output II.

Callgrind on tracking of one 1 TeV e-:
 20% spent in __tls_get_addr() [with Ex03 geom]
 every access to a common variable goes via this!

Complained to gcc mailing list, proposed to get the

base-address once at each function entry.

Still an open issue. If fixed, loss would only be 1%.
estimated from # of calls and # of function entries

We were told to use static linking – that there is no
penalty there. Still on our ToConsider stack.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 12

Results – ALICE – 300MB output

1. Scaling for 4 threads:
3.69 (down from 3.79)
Locking during output.

1. Memory: +5MB/thr [0v]
1. TClonesArray for hits
2. IO buffers for particles/hits

85MB/thr
110MB/thr

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 13

Results – ALICE – 2GB output

135MB/thr 175MB/thr

Check impact of more IO.
Compression: 15% more CPU
1. Less difference for 1 thr.
2. Poorer scaling: sequential IO

begins to bite
Memory increases: larger IO

buffers.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 14

Results – Output in a dedicated thread
Avoid waiting for serialization!
 Particle/hit arrays created as

needed [eg. ~20 for 4 threads]
 Memory usage per thread doubles.
 As arrays get passed among

threads, speed is affected, too.
 Limit # of containers per thread?

The solution: Fill and compress
output buffers in the MC thread!

190MB/thr 245MB/thr

[with output size 300MB]

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 15

Results – Realistic comparison
Compare under same CPU load (300MB output):

1. 4 single-threaded jobs running concurrently
2. 4 four-threaded jobs running sequentially

Wall-time-ratio: 0.942 [would be 0.923 taking 3.69 speedup]

With parallel thread initialization becomes 0.976.
Memory-ratio: 1.77 [1.93 virtual]

For AliRoot one should add +400MB [+900MB virtual] per process:

ratio becomes 2.8 [3.0 virtual]

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 16

Conclusion

We consider this a successful attempt:
We have a testing / benchmarking framework for
parallelization of simulation.

Memory usage per thread ~100MB – very good!
Scaling – issues, but satisfactory.
Problems are part of the game – start early!

Memory buffers and IO are crucial.
For track-parallelism need thread-safe way of filling TTrees.

Structure of code improves with thread-safety:
 clear separation between local and task data;
 task context naturally becomes thread-private.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 17

Further work
 Open issues:

 Follow-up on thread-private data access in OpenMP
 Try KSM and HOARD memory allocator
 Try running on machines with more cores

 Plans:
 Push thread-safe TGeo into ROOT
 Consider event-level and job-level parallelization
 Consider other transport engines – with VMC!
 Explore VMC parallelization towards a final solution

 Use all this with ALICE simulation
 When issues resolved and ground-work finished
 Digitization – memory usage goes to 2GB virtual!

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 18

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 19

Workbook – Geant3 and TGeo
 Geant3 thread-safety

 Use OpenMP to make all commons and saved
variables thread-private

 Issue: equivalence between thread-private
variables not allowed by OpenMP specification
 Requested extension - now an open issue in gcc tracker

 TGeo thread-safety
 Most work already done by the author (A. Gheata)

 Class TGeoNavigator – contains tracking state & stack
 A couple of small structures made thread-private

 Voxelization and division – navigation optimizations
 Composite shapes and shape assemblies – state info

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 20

Workbook – VMC
 As VMC is virtual, it is hard to parallelize 

 TGeant3 and its subclass TGeant3TGeo
 Example03 from Geant4 (simple Pb calorimeter)

But general concepts could go into the base classes.

 TMCContext – encapsulate tracking state for
each primary:

1. MC transport engine (TGeant3TGeo)

2. Particle stack and Hit container

3. Random generator (seeds set per primary)

4. TGeoNaviagator

Stored as thread-specific data.

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 21

Workbook – Running scheme

1. Initialize geometry and magnetic field

2. Initialize worker threads:
 N transport threads (nice 20)
 optional – dedicated output thread
Can be done in parallel ... left like this for monitoring.

 Run the threads - feed them from top-level primary stack
1. Get primary, setup random seed
2. Process with inner MC loop
3. Output particles and hits:

Without IO thread:
 TBranch::SetAddress() – for particles and hits
 TTree::Fill() – fill the trees, compression is also done here

With IO thread:
1. Pass TClonesArray’s to output queue
2. Acquire a new set of arrays from a pool (or create new ones)

24.3.2009 M. Tadel, F. Carminati: Parallelization of ALICE simulation [CHEP-09, Prague] 22

Workbook – The missing page
 We didn’t run these tests in full AliRoot.

 In particular, this avoids the detector-specific
code for Hit processing and setting of step-size.
 Not much would have to be changed there:

Get virtual MC and Hit arrays as arguments
(from context)

Some static variables need to be removed.
95 files would need to be modified.

 The detailed changes will depend on the final form
of parallelized VMC and TGeo.

 But we were running with full ALICE geometry.

	Parallelization of ALICE simulation
	Contents
	Intro – Motivation
	Intro – ALICE simulation facts
	Workbook – What we did
	Workbook – Process scheme
	Results – Correctness testing
	Slide 8
	Results – Initial memory usage
	Results – ALICE – no output I.
	Results – ALICE – no II.
	Results – ALICE – 300MB output
	Results – ALICE – 2GB output
	Results – Output in a dedicated thread
	Results – Realistic comparison
	Conclusion
	Further work
	Slide 18
	Workbook – Geant3 and TGeo
	Workbook – VMC
	Workbook – Running scheme
	Workbook – The missing page

