
The CMS data acquisition system comprises of
O(20000) of interdependent services that need to
be monitored in near real-time. The ability to
monitor a large number of distributed applications
accurately and effectively is of paramount
importance for operation. Application monitoring
entails the collection of a large number of simple
and composed values made available by the
software components and hardware devices. A
key aspect is that detection of deviations from the
specified behavior is supported in a timely
manner. This is a prerequisite to take corrective
actions efficiently. Given the size and time
constraints, efficient application monitoring is an
interesting research problem. We propose an
approach that use the emerging paradigm of
Web-service based eventing systems in
combination with hierarchical data collection and
load-balancing. Scalability and efficiency are
achieved by a decentralized architecture, splitting
up data collections into regions of collections. An
implementation following the presented scheme is
deployed as monitoring infrastructure of the CMS
experiment at the Large Hadron Collider. All
services in this distributed data acquisition system
are providing standard web service interfaces via
XML, SOAP and HTTP. Continuing on this path
we adopted WS-* standards implementing a
monitoring system layered on top of the W3C
standards stack. We designed a load-balanced
publisher/subscriber system with the ability to
include high-speed protocols for efficient data
transmission and serving data in multiple data
formats.

MONITORING THE CMS DATA ACQUISITION SYSTEM
G. Bauer 7, B. Beccati 3, U. Behrens 2, K. Biery 6, A. Brett 6, J. Branson 5, E. Cano 3, H. Cheung 6, M. Ciganek 3, S. Cittolin 3, J. A. Coarasa 3,5, C. Deldicque 3, E. Dusinberre
5, S. Erhan 4, F. F. Rodrigues 1, D. Gigi 3, F. Glege 3, R. Gomez-Reino 3, J. Gutleber 3, D. Hatton 2, J-F. Laurens 3, C. Loizides 7, J. A. Lopez Perez 3,6, F. Meijers 3, E. Meschi

3, A. Meyer 2,3, R. Mommsen 6, R. Moser 3,8, V. O'Dell 6, A. Ohb 3, L. B. Orsini 3, V. Patras 3, C. Paus 7, A. Petrucci 5, M. Pieri 5, A. Racz 3, H. Sakulin 3, M. Sani 5, P.
Schieferdeckerc 3, C. Schwick 3, J. F. Margaleff 7, D. Shpakov 6, S. Simon 5, K. Sumorok 7, M. Zanetti 3

1 CEFET, Rio de Janeiro , Brazil; 2 DESY, Hamburg, Germany; 3 CERN, Geneva, Switzerland; 4 UCLA, Los Angeles, California, USA 5 UCSD, San Diego, California, USA; 6
FNAL, Chicago, Illinois, USA; 7 MIT, Cambridge, Massachusetts, USA; 8 Technical University of Vienna, Austria

This is the method by which any data tuples
defined for the data acquisition system are
retrieved from the distributed applications,
merged and made available in various
standard formats. All metrics are treated
using a uniform, table based data format
throughout the whole processing chain, see
Figure 2.
Table definitions enumerating all data items,
called flashlists, are specified in XML.
Flashlist specifications reliably identify the
content for merging, tracking and analysis
with additional information, including
timestamps, version and application
identification (URI, URL, UUID, IP and
others) fields. These data are inserted by
the framework transparently to the
application software.
Data collection is initiated in either of two
ways at the sources: push from the
application or pull according to a configured
time period. Merging of distributed tables is
performed in one or more steps by a service
called collector. A load balanced pool of
data collectors copes with the data traffic.
The data so collected is served to user
interface applications on request in JSON,
XML, CSV and SunRPC binary format by
the live access services over HTTP
protocol.

DAQ applications have the capability to
asynchronously notify exceptional
conditions using a uniform data format
to the monitoring infrastructure.
Two different scenarios can be
identified. Applications that detect
persistent deviations from the normal
system behavior can report errors. A
deviation may also be transient.
Therefore an alarm is fired and
eventually revoked when the asserted
condition is resolved.
Reporting errors and alarms is
performed through sentinel services
that take care of routing notifications,
guaranteeing delivery and preventing
flooding the system. All reports are
recorded by a persistency service
called spotlight that keeps the history
of all events. This allows playing back
the occurred process. Errors and
alarms are visualized by the hotspot
[10] facility that maps them to the
graphics according user defined
models of the system.
The tool offers different views on the
model such as tree navigation, heat
maps, tables and scrolling terminals,
see Figure 5.

The infrastructure is based on service
oriented architecture[2,3,4], in which a
3-tier structured collection of
communicating components cooperate to
perform the monitoring task. The
universal application connectivity, that
makes every monitoring and application
services inter-communicating is based on
the XDAQ [5,6,7,8] middleware. As
shown in Figure 3, the system builds
upon a scalable publisher-subscriber
service consisting of a pool of eventing
applications orchestrated by a load
balancer called broker. The DAQ
applications act as data producer through
sensor services to publish monitoring
data. Similarly sentinel services are
used to report errors and alarms. Other
services for processing, storing, filtering
and transforming the information express
their interest by selectively subscribing to
eventing services. Presentation
components can either subscribe or
directly retrieve monitoring data from the
required provider services. All services
are re-locatable and run independently of
each other without a need for external
control. Communication among services
is established through a rendez-vous
mechanism with the help of discovery
services facilities [9]. The heartbeat
service keeps track of all running
services and DAQ applications.

The two plots below give scalability
measurements for different system
sizes in terms of total message rate
and throughput. Increasing the size
means adding slices starting from ≈800
applications on ≈150 computers to
5500 applications on 1000 computers.
Standard deviation grows with the
system size.
The achieved performance allows
running the system at the required
update rate of 1 Hz for all data
sources.
The current system collects about 20
different flashlists and all updated
values can be synchronized within 1
second. The latency for each report
depends on the number of collection
steps. It has been measured to be
within one second.

Monitoring the CMS [1] data acquisition
system spans all tasks to retrieve,
collect and display information used to
track the status and operation as well as
processing of errors and alarms in a
uniform manner. The system is
characterized by a large number of
hosts and applications. In addition to all
traditional requirements that specify the
monitoring tasks, scalability
requirements are a key concern that
pervades all aspects of the system
design. Scaling requirements along
several dimensions are imposed onto
the on-line monitoring infrastructure:
Numerical scalability refers to the
ability to seamlessly perform operation
with an increased number of users,
resources, and services.
Geographical scalability refers to the
ability to perform the same identical
function regardless of the physical
resource location.
Administrative scalability is achieved
if the system is managed in the same
way even if it encompasses multiple
administrative domains. This includes
network boundaries, physical computers
and mapping of applications to
resources.
Functional scalability refers to the
ability to accommodate additional
functionality.
The proposed infrastructure fits these
needs by providing a set of expandable
and reusable solutions allowing use of
the the monitoring and alarming system
for development, test and operation
scenarios.

INTRODUCTION

ARCHITECTURE AND DESIGN

1. CMS, http://cms.cern.ch, http://
cms.web.cern.ch

2. SOA, http://soablueprint.com/
practitioners_guide

3. Booth, D. et al. 2004, Web Service
Architecture, http://www.w3.org/TR/ws-arch

4. Reference Model for Service Oriented
Architecture 1.0, OASIS Standard, October
2006, http://docs.oasis-open.org/soa-m/v1.0/

5. XDAQ Data acquisition framework,
http://cern.ch/xdaq

6. Gutleber, J. et al. 2005, Proc. of the 10th Intl.
Conf. Accelerator and Large Experimental
Phys. Control Sys., Geneva, Switzerland,
HyperDAQ Where Data Acquisition Meets the
Web.

7. Gutleber, J., Orsini L., 2000, Proc. of the IEEE
Intl. Conf. on Cluster Comp., Chemnitz,
Germany, IEEE, Architectural software support
for processing clusters.

8. Gutleber, J., Murray S., Orsini L., 2003,
Elsevier Comp. Phys. Comm. 153(2):155-163,
Towards a homogeneous architecture for high-
energy physics data acquisition systems.

9. Guttman, E., Perkins, C., Vaizades, J., Day, M.
1999, Sevice Location Protocol, Version 2,
http://www.ietf.org/rfc/rfc2608.txt.

10. Adobe Flex 3 Rich Internet Applications,
http://www.adobe.com/products/flex/ BENCHMARKS

ERRORS AND ALARMS DATA COLLECTION

REFERENCES

Figure 3. Architecture

Figure 1. DaqMon (Labview). Layout of the running system with all
nodes and their states, history and current status of data flow
elements

Figure 2. Data life cycle from monitorable sources to user
display. Tuples from all applications are merged into hash
tables according to configuration.

ABSTRACT

Name: Luciano Orsini
Organization: CERN
Email: Luciano.Orsini@cern.ch
Phone: +41227671615
Web: http://xdaq,web,cern.ch

CONTACTS

Figure 5. Hotspot
viewer. Example of
errors and alarms report
according to two
different perspectives of
the system. Errors and
alarms are associated to
elements of the system
model and displayed
according to their
severity levels.

Name: Johannes Gutleber
Organization: CERN
Email: gutleber@cern.ch
Phone: +41227671536
Web: http://xdaq,web,cern.ch

Name: Roland Moser
Organization: CERN
Email: Roland.Moser@cern.ch
Phone: +41227670808
Web: http://xdaq,web,cern.ch

0.5 - 2 KB/msg 128 KB - 4 MB/msg

Tuples Tables

O(15000) msg/s O(100) msg/s O(10) msg/s

Visualization

!"#$%&"'()
*+,-'.)

,"/-#)
!"01&2)

3'&4-')

5,&.67/$.)8-"'.%-".)

8&.#,&.)

9
7#
:
"
67
;"
<
&
2
)

=
'&
>-
##
72
/
)"
2
(
)>
&
2
.'
&
6)

!
"
."
)#
&
:
'>
-
#)

5-2<2-6)
5-2<2-6)

5-2#&')
5-2#&')

?-2<2/)?-2<2/)@&66->.&')@&66->.&')

A7?-)B>>-##)

5-'?7>-)

A7?-)B>>-##)

5-'?7>-)

