The CMS Computing, Software & Analysis Challenge

Rainer Mankel (DESY / CERN) David Futyan (Imperial College) Christoph Paus (MIT) for the CMS collaboration

Computing in High Energy Physics Conference 2009 Prague, 24 March 2009

Reasoning & Scope

The Computing, Software & Analysis Challenge 2008

- Full-scale computing, commissioning & physics challenge with large statistics under conditions similar to LHC startup
 - [pre-production of MC samples at various tiers]
 - prompt reconstruction at T0
 - skims for alignment & calibration
 - reduced form of reconstructed data, containing precisely the minimal information required as input to a given calibration/alignment algorithm ("AICaReco format)
 - alignment & calibration "in real time" at the CERN Analysis Facility (CAF)
 - re-reconstruction at T1
 - physics analysis at T2 and CAF

Alignment & calibration teams

CSA and CCRC

- CSA08 took place concurrently with the LHC Common Computing Readiness Challenge (CCRC08)
 - additional centrally operated CMS workflows to generate computing load
 - → fixed time scale, no delays accepted
 - all CSA08 production targeted to end on 2-June

See also: Challenges for the CMS Computing Model in the First Year (Ian Fisk)

The Computing, Software & Analysis Challenge 2008 (cont'd)

- This challenge placed strong emphasis on handling alignment & calibration under LHC start-up conditions
- Initial mis-alignments & -calibrations as expected:
 - a) before collisions,
 - b) after 1 pb⁻¹ of data
- → Situation significantly different from the one at LHC design luminosity (→ Physics TDR)
 - not yet a high rate of "golden" event signatures
 - example: $Z^0 \rightarrow \mu^+ \mu^-$ decays for alignment
- Full complexity of many concurrent alignment & calibration end-to-end workflows (with interdependencies)
- Realistic analyses based on the derived constants

The CSA08 Scenarios

• Assumed two scenarios as they are expected to appear during the beam commissioning of the LHC:

Name	Bunch schema	Luminosity	Duration [effective]	Integrated luminosity	HLT Output Rate	#Events
S43	43x43	$2 \cdot 10^{30} \text{ cm}^{-2} \text{s}^{-1}$	6 days	1 pb ⁻¹	300 Hz	150 M
S156	156x156	2 · 10 ³¹ cm ⁻² s ⁻¹	6 days	10 pb ⁻¹	300 Hz	150 M

- Consequently, the data are governed by low luminosity
 - dominated by minimum bias, jet triggers
 - small sets of high p_T leptons & Z⁰ decays
 - non-collision samples:
 - cosmic muons passing tracker
 - HCAL noise

Offline Workflow in CSA08

24-Mar-2009

R. Mankel; CMS Computing, Software & Analysis Challenge

CSA08/CCRC08 Schedule

Week 18		Week 19	Week 20	Week 21	Week 23	
Tier-0	PreProduction	S43 Prompt Reco and dataset transfer to CERN S156 Prom		C		_ _
				CCRC08 end-to-end tests		p
CAF		DataSets arrive	S43 alignment and calib	S156 alignment and calib		Ш
			<mark>S43 User Analysi</mark>	s S156 U	ser Analysis	L R
Tier-1		PreProduction		S43 ReReco	S156 ReReco	1 S
				CCRC08 scale tests, Skimming		Ĭ
Tier-2		eProduction Other MC Production		S S S		
	Phase 0 - Prep	Phase 1 - Centrally Organized Activities Phase 2 - Chaotic analysis		Phase 3 - Final phase		ŬŬ
					CSA analysis	

May 08

- Both the 1 pb⁻¹ and 10 pb⁻¹ data samples are each based on a week of "simulated" data-taking
- Planned O(1 week) for prompt reconstruction
- Target for alignment & calibration: constants ready after 1 week for each sample
- The essential milestones of the CSA08 challenge have been kept

Computing Performance

24-Mar-2009

R. Mankel; CMS Computing, Software & Analysis Challenge

Computing Performance: Pre-Production (Event Simulation)

 On average ~8000 concurrent jobs, at all WLCG tier levels: T0/T1/T2

24-Mar-2009

R. Mankel; CMS Computing, Software & Analysis Challenge

Computing Performance: Prompt Reconstruction (at T0)

• 150 M events reconstructed in less than 4 days

Computing Performance: Data Transfers into CERN

- Pre-production: transfers from various T1+T2 into CERN
- Driven by production. (Not saturating capacity)

Alignment & calibration workflows in CSA08

Note: workflows were performed "in real time" \rightarrow no additional optimization possible

Alignment & Calibration in CSA08

- The following alignment & calibration workflows were performed:
 - Tracker alignment with MillePede-II, HIP & Kalman filter algorithms
 - Muon system alignment with MillePede-like and HIP algorithms
 - ECAL calibration exploiting ϕ -symmetry, & using response from $\pi^0 \rightarrow \gamma \gamma$ and Z \rightarrow ee decays
 - HCAL calibration exploiting φ-symmetry, single-pion response & balancing with di-jet signatures
 - Muon drift tube calibration: time pedestals & drift velocity
 - Pixel tracker calibration: Lorentz angle
 - Strip tracker calibration: Lorentz angle & cluster charge
 - Determination of beam spot (before & after alignment)

See also: Commissioning the CMS Alignment and Calibration Framework (David Futyan) [Poster]

Tracker Alignment

- Several algorithms used:
 - HIP (Hit and Impact Point)
 - Kalman filter
 - MillePede-II (shown)
- Results:
 - 1 pb⁻¹ (S43): only minimum bias (6.6M) and muon (p_T>5 GeV) samples used
 - 10 pb⁻¹ (S156): cosmics, muon (p_T >11 GeV) and di-muon samples added

CSA08 Tracker Alignment

- → Significant improvement of track quality
 - → distribution of track χ^2 / n_{DF} already close to ideal

See also: Application of the Kalman Alignment Algorithm to the CMS Tracker (Edmund Widl) [Poster]

Tracker Alignment: Accuracy

- Precision relative to true geometry, after undoing global shifts & rotations
 - quality of internal alignment of these structures

	$r\phi$ precision [μ m] from MillePede-II		
Tracker Subsystem	Startup*	S43 (1 pb ⁻¹)	S156 (10 pb ⁻¹)
Barrel Pixel	105	6	3
Tracker Inner Barrel	482	24	10
Tracker Outer Barrel	106	30	23
Forward Pixel	120	48	48
Tracker Inner Disks	445	48	38
Tracker End Cap	92	29	26

*The expected "startup" alignment will be revised according to the results of extensive data-taking with cosmic muons

Tracker Alignment (cont'd)

- p_T resolution at high momentum very sensitive to coordinate resolution & thus to alignment
 - also systematic effects (e.g. due to weak modes) can show here
- Visible improvement (Gaussian fits):

MillePede S43	3.0%	
MillePede S156	2.2%	
Ideal	1.7 %	

Tracker Calibration

- Cluster charge calibration of the strip tracker
 - artificial mis-calibration: 5% in S156 (10% in S43)
 - 23 M minimum bias events
 - fit most probable value (MPV) of cluster charge spectrum for each sensor (Landau) → calibration factor
 - sharp peaks after calibration, calibration accuracy <1%
- Lorentz angle calibration of pixel tracker
 - using "grazing angle" technique
 - applied on global muon tracks
 - error of global fit 0.1%

See also: The CMS Tracker calibration workflow: experience with cosmic ray data (Simone Frosali) [Poster]

ring

Muon System Alignment I

- Caveat: normally we expect to need 50-100 pb⁻¹ to align the muon system
- Try internal alignment of barrel muon system using Millepede-like algorithm
- With 10 pb⁻¹ sample, see first correlation between measured and simulated misalignments

- Typical accuracy
 700-800 μm in measurement direction
 - → as expected, limited by number of high-p_T muons
 - need more integrated luminosity for accurate alignment
- Also alignment of muon chambers with tracker as reference (HIP algorithm) successfully operated

R. Mankel; CMS Computing, Software & Analysis Challenge

See also: The CMS Muon System Alignment (Pablo Martinez)

Calibration of Muon Drift-Tube Chambers

- Time pedestal calibration
- Drift velocity calibration
 - using "mean timer" method
- Homogeneous results for drift velocity of ~54.2 μm/ns
 - as expected, lower values for inner chambers of wheels near end cap regions (non-linearities due to inhomogeneous stray field)
- Analysis of residuals from 3D segments gives measure of resolution after calibration
 - as expected, higher values for inner chambers of wheels near end caps regions (non-linearity), and for MB4 chambers (only one projection available)

See also: Calibration of the Barrel Muon DT System of CMS (Silvia Maselli) [Poster]

24-Mar-2009

R. Mankel; CMS Computing, Software & Analysis Challenge

Calibration of Electromagnetic Calorimeter

- At startup, ECAL will already be pre-calibrated at a level of ~1.5 % (barrel) and ~10% (end caps)
- Exploiting the φ-symmetry of minimum bias events, the residual mis-calibration in the ECAL end caps is reduced to a few percent soon after startup
 - 20 M minimum bias events used (10 pb⁻¹ sample)
- Z decays with one electron in barrel and one in end caps validate inter-calibration of barrel and set absolute energy scale

Physics Analyses Based on CSA08 Data Samples

- Physics analyses were carried out in four main areas:
 - measurement of charged particle spectra & analysis of the underlying event
 - early observation of muons, measurement of the di-muon mass spectrum, observation of J/ Ψ , Υ and Z resonances
 - early observation of electrons, observation of the Z resonance
 - early observation of jets, their corrections and the extraction of early jet physics
- These analyses were carried out:
 - during CSA08 using prompt S43 + S156 reconstruction, and rereconstructed S43 data
 - during the 2 weeks following CSA08 using re-reconstructed S156 data
- → Important validation of alignment & calibration constants

Lessons

• Computing

- though pre-production & prompt reconstruction were partly concurrent, overall traffic was still manageable
- overhead in merging & registration procedures observed
 → corrected
- Alignment & calibration
 - interdependencies turned out to be very important
 - tracker alignment & muon system alignment
 - tracker alignment & Lorentz angle calibration
 - beam spot & alignment
 - → these were properly addressed in the 10 pb⁻¹ workflows
 - all alignment & calibration workflows technically fit into a 24h window
 - important for prompt calibration workflow
- Note: due to e.g. the extended runs with cosmic muons, in several aspects CMS initial alignment & calibration in reality will be better than assumed for CSA08

Summary

- CSA08 has successfully demonstrated significant components of the CMS computing workflow
- In particular the alignment & calibration framework has been successfully proven
 - 1 pb⁻¹ & 10 pb⁻¹ exercises completed on time by all sub-detectors
 - all required constants uploaded to the production database
 - re-reconstruction could proceed on schedule
- Organizational challenges were mastered
 - complexity of a large number of workflows
 - inter-dependencies between workflows
 - management of database conditions
- Realistic physics analysis performed with low latency
 - preparation for early observations with LHC

Additional Material

CMS Design Offline Workflow (with Prompt Calibration)

Frontier

- For reading, ORCON and ORCOF are accessed via an intermediate caching layer called Frontier
 - Each database query is cached on the Frontier squids (http based proxy servers) to avoid the database itself being overloaded with repeated requests to access the same tables
 - T0 has 4 squids, FNAL has 2, all other T1, T2 sites have a single squid

