
Shahzad Muzaffar, Northeastern University, Boston CHEP09: International Conference on Computing in High Energy Physics and Nuclear Physics, 21-27 Mar 2009, Prague (Czech Republic)

Sh
ah

za
d

.M
u

za
ff

ar
@

ce
rn

.c
h

Introduction
Optimal build, release and distribution of CMS software, which is actively developed by hundreds of developers all over the
world, is quite a challenge. Over 2400 shared libraries, plugins, and executables are generated out of two million lines of
CMSSW (CMS Software) code, which is divided in 1100 individual Packages organized in 100 Sub-Systems. Its dependency
on more than hundred external software packages make its build and distribution more complex.

Objectives
•  Hide all the complex dependency information from software developers
•  Provide an easy and fast way so that developers can work on few packages
without the need of rebuilding every thing
•  Easy and consistent way of distributing CMS software

Problems

CMSSW
BuildFiles

External
tools

definition

BuildFile
Parser

Makefile
Generator

Makefile

SCRAM

BuildFile
Cache

SCRAM Caches

CMS uses SCRAM to achieve the first two objectives. SCRAM transforms the
user defined build rules into gmake rules. Developers define dependencies in
simple text file (BuildFile) and SCRAM takes care of the rest.

For software distribution, CMS has been using APT repository. PKGTOOLS
are used to build the RPMs for CMSSW and its externals.

CMS software build issues
Increasing number of CMS packages and dependency on large number of
external tools made SCRAM very slow.

•  In developer’s area with few packages SCRAM overhead was more than
the compilation time
•  Memory usage of SCRAM went over 1GB
•  SCRAM generated internal caches grow over 100MB
•  Generated Makefile went over 75MB
•  Build rules were not allowing to even build code in parallel

External tools build and distribution issues
•  External tools were built one at a time so it was taking too much time
•  Often downloading a CMSSW version brought in multiple versions of same
external tool
•  For simple patches, full CMSSW release was to build and distribute

Solutions
Instead of looking in to new tools and migrating whole CMS community to
learn new tools, we looked for the cause of the problems and fixed them.

Dependency checking
SCRAM was taking most of its time resolving packages and externals tools
dependencies and reading its large internal cache files. As gmake is much
faster in keeping track of dependencies so why bother doing it in PERL.

Reducing SCRAM internal cache size and moving all the dependency tracking
work into gmake fixed many things. SCRAM overhead was dramatically
reduced (much smaller processing time, memory usage and disk space).

Results
•  Developers have more time to spend on their code instead of waiting for
compilation to finish
•  Multiple Integration Builds per day for all supported platforms and
different CMSSW release series
•  Couple of hours to build, release and distribute a full CMSSW release
•  Distribution size reduction mean fast download and deployment of
CMSSW software at remote sites

Solutions

Gmake overhead

SCRAM Overhead
Gmake overhead remained
same but SCRAM overhead
was dramatically reduced

SCRAM caches
< 600Kb

SCRAM caches
< 30Kb

Parallel compilation to reduce build time
In order to reduce build time, CMS build rules were modified to allow parallel
build (gmake -j n). This allowed us to make use of multi core machines,
which resulted in much faster builds.

New CMSSW build rules allowed us to build few big shared libraries instead
of thousands of small ones and help us identifying issue like

•  A lot of C++ templates code being replicated in many small library/plugin
•  Copying of files between different packages resulted in same symbols
defined in many libraries which mean unpredictable runtime behavior.

External tools build and distribution
New PKGTOOLS and spec files improved many aspects of the distribution

•  Build things in parallel which do not depend of each other. This resulted
in much faster build of externals tools (couple of hours to build all
externals)
•  Always rebuild a tool for which any base level tool is modified. This
avoided the distribution of multiple version of same tool
•  CMSSW patch release setup to only build and distribute a limited number
of CMSSW packages
•  Automatically create external tool definition files for SCRAM

Optimization of the CMS software build and
distribution system
Giulio Eulisse, Shahzad Muzaffar

Northeastern University, Boston
On behalf of the CMS Offline and Computing Projects

